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IntroducCon	  
Part	  I	  
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Data Streams everywhere 

• Unbounded	  flows	  of	  data	  are	  generated	  daily:	  	  
•  Social	  Networks	  
•  Network	  Monitoring	  
•  Financial/Banking	  industry	  
•  ….	  
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Data Stream Processing 

•  Processing	  data	  streams	  is	  challenging:	  
–  They	  do	  not	  fit	  in	  main	  memory	  
–  ConCnuous	  model	  updaCng	  	  
–  ConCnuous	  inference	  /	  predicCon	  
–  Concept	  dri[	  
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Processing Massive Data Streams 

• Scalability	  is	  a	  main	  issue:	  
•  Scalable	  compuCng	  infrastructure	  
•  Scalable	  models	  and	  algorithms	  
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Why Bayesian networks? 

§  Example:	  	  
§  Stream	  of	  sensor	  measurements	  about	  temperature	  and	  
smoke	  presence	  in	  a	  given	  geographical	  area.	  

§  The	  stream	  is	  analysed	  to	  detect	  the	  presence	  of	  fire	  (event	  
detecCon	  problem)	  

	  

?	  
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§  The	  problem	  can	  be	  approached	  as	  an	  anomaly	  
detec+on	  task	  (outliers)	  
§  A	  commonly	  used	  method	  is	  Streaming	  K-‐Means	  

Why Bayesian networks? 

Anomaly	  
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Why Bayesian networks? 

§  OJen,	  data	  streams	  are	  handled	  using	  black-‐box	  models:	  

§  Pros:	  
§  No	  need	  to	  understand	  the	  problem	  

	  

§  Cons:	  
§  Hyper-‐parameters	  to	  be	  tuned	  
§  Black-‐box	  models	  can	  seldom	  explain	  away	  

Stream	  

Black-‐box	  Model	  

PredicCons	  
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§  Bayesian	  Networks:	  
§  Open-‐box	  models	  
§  Encode	  prior	  knowledge.	  
§  ConCnuous	  and	  discrete	  variables	  (CLG	  networks).	  	  
§  Example:	  	  

	  

Why Bayesian networks? 

Fire	  

Temp	   Smoke	  

T1	   T2	   T3	   S1	  

	  p(Fire=true|t1,t2,t3,s1)	  

CAEPIA 2015  Albacete, November 9, 2015 10 



Why Bayesian networks? 

Stream	   Predic+ons	  

Open-‐box	  Models	  
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Why Bayesian networks? 

Stream	   Predic+ons	  

Open-‐box	  Models	  

Black-‐box	  Inference	  Engine	  
	  	  	  	  	  	  	  (mul+-‐core	  paralleliza+on)	  
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The AMIDST project 

§  FP7-‐funded	  EU	  project	  
§  Large	  number	  of	  variables	  
§  Data	  arriving	  in	  streams	  
§  Based	  on	  hybrid	  Bayesian	  networks	  
§  Open	  source	  toolbox	  with	  learning	  and	  inference	  capabiliCes	  
§  Two	  use	  cases	  provided	  by	  industrial	  partners	  

§  Predic+on	  of	  maneuvers	  in	  highway	  traffic	  (Daimler)	  
§  Risk	  predic+on	  in	  credit	  opera+ons	  and	  customer	  profiling	  (BCC)	  

§  hZp://www.amidst.eu	  
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RECONOCIMIENTO AUTOMÁTICO DE MANIOBRAS  
DE TRÁFICO UTILIZANDO AMIDST 

 

D. Ramos-López, H. Borchani, A. M. Fernández, A. R. Masegosa,  
 H. Langseth, T.D. Nielsen, A. Salmerón y A. L. Madsen 

OBJETIVOS 

MODELADO CON REDES BAYESIANAS  
DINÁMICAS HÍBRIDAS 

Utilizando los distintos sensores, 
radares y cámaras de un vehículo, 
detectar con suficiente antelación 
maniobras del propio vehículo o de 
otro cercano. 

MANIOBRAS DEL VEHÍCULO PRECEDENTE 

MANIOBRAS DEL VEHÍCULO PROPIO 

FLUJO DE DATOS CONTINUO 

Los dispositivos del vehículo continuamente están aportando nuevos datos 
(cada pocos milisegundos) que deben ser analizados en tiempo real para 
tomar decisiones si se detecta una maniobra peligrosa, propia o ajena. 

DIFICULTADES: 
• Manejar datos de distintas fuentes, 
discretos y continuos, y con errores. 
• Respuesta en tiempo real 

 
• Predicciones con suficiente antelación 
• Gran precisión al reconocer maniobras 
• Pocos recursos computacionales 

RESULTADOS OBTENIDOS EN LA  
PREDICCIÓN DE MANIOBRAS DE TRÁFICO 

En proyecto de investigación AMIDST ( www.amidst.eu ) se está elaborando 
un paquete informático que permite el análisis y la predicción escalables y 
eficientes de flujos continuos de grandes cantidades de datos (streaming). 

Una de las aplicaciones industriales en desarrollo dentro del proyecto es la 
detección temprana de maniobras de tráfico, con el fin de anticiparse a 
posibles accidentes de tráfico y así reducir la siniestralidad. 

REDES BAYESIANAS DINÁMICAS 
 DE 2 ETAPAS TEMPORALES 

CADENAS DE MARKOV 

REDES BAYESIANAS 
Las relaciones entre variables vienen dadas 
por un grafo dirigido. Se conocen las 
distribuciones condicionales de probabilidad, 
dados los valores de los padres. 
 

RED BAYESIANA DINÁMICA PARA LA EVIDENCIA LATERAL EN UN VEHÍCULO 

• Es preferible analizar la 
tendencia a fijar un valor de corte 
en la probabilidad.  
 
• Con ello, es posible predecir las 
maniobras con mayor antelación que 
usando otros métodos. 
 
• Las redes Bayesianas dinámicas, 
mediante el uso de algoritmos de 
inferencia aproximados,  son una 
herramienta adecuada para las 
dificultades de este problema. 
 
• El paquete AMIDST permite el 
análisis de datos en tiempo real, 
mediante el uso de redes Bayesianas 
dinámicas, proporcionando un entorno 
adecuado para intentar resolver este 
problema.  
 
• Se espera que estas y otras 
contribuciones reduzcan el número de 
víctimas de accidentes de tráfico, 
buscando el objetivo de conseguir un 
vehículo totalmente seguro. 
 



Bayesian	  networks	  
Part	  II	  
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Definition 

§  Formally,	  a	  Bayesian	  network	  consists	  of	  
§  A	  directed	  acyclic	  graph	  (DAG)	  where	  each	  node	  is	  a	  random	  
variable	  

§  A	  set	  of	  condiConal	  probability	  distribuCons,	  one	  for	  each	  
variable	  condiConal	  on	  its	  parents	  in	  the	  DAG	  

	  

§  For	  a	  	  set	  of	  variables	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ,	  the	  joint	  
distribu+on	  factorizes	  as	  
	  

	  
§  The	  factorizaCon	  allows	  local	  computaCons	  
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Formally, let X = {X1, . . . , XN} denote the set of stochastic random variables defining
our domain problem. A BN defines a joint distribution P (X) in the following form:

p(X) =
NY

i=1

p(Xi|Pa(Xi))

where Pa(Xi) ⇢ X\Xi represents the so-called parent variables ofXi. Bayesian networks
can be graphically represented by a directed acyclic graph (DAG). Each node, labelled
Xi in the graph, is associated with a factor or conditional probability p(Xi|Pa(Xi)).
Additionally, for each parentXj 2 Pa(Xi), the graph contains one directed edge pointing
from Xj to the child variable Xi.

Figure 3.2 shows an example of a BN model. The nodes, which correspond to variables,
are coloured in green or blue to highlight their nature, i.e., discrete or continuous, respec-
tively, according to the notation depicted in Figure 3.1. Note that the notation on the
second row corresponds to how a particular subnetwork will be represented later on in
this document, e.g. a subnetwork with a set of hidden discrete and continuous variables
would be represented by a dotted white frame2. Each subnetwork module corresponds
to a part of the DBN with common features such as all the nodes are continuous and
observed. Instead of eclipsed nodes used to depict single variables in a graph, we repre-
sent here the subnetwork modules using frames. In general, dashed lines refer to hidden
variables or subnetworks (i.e., those including only hidden variables), while continuous
lines refer to observed variables or subnetworks (i.e., those including only observed vari-
ables). Then, depending on the background colour, variables or subnetworks can be
either discrete (green), continuous (blue) or hybrid (white or green/blue).

Figure 3.2: Example of a BN model with continuous and discrete variables.

Traditionally, BNs have been defined for discrete domains, where the entities of interest
are modelled by discrete variables which ensures that belief updating can be performed
e�ciently and in closed form. However, this requirement imposes severe restrictions as
many domains contain entities that are more appropriately modelled by variables with
continuous state spaces; such as distance and velocity measurements which are key sensor

2This is indeed the only restricted subnetwork, since only links from discrete to continuous variables
are allowed and not the other way around.
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Reading independencies 

Independence	  rela+ons	  can	  be	  read	  off	  from	  the	  
structure	  

	  
There	  are	  three	  types	  of	  connecCons:	  
	  
§  Serial	  
	  
§  Diverging	  
	  
§  Converging	  
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Tipos de conexiones

Conexión en serie:

A B C

Conexión divergente:

A B C

Conexión convergente:

A B C

Antonio Salmerón Cerdán (UAL) Tema 3: Redes bayesianas 6 / 20
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Reading independencies. 
Example 

Fire	  

Temp	   Smoke	  

T1	   T2	   T3	   S1	  
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•  Knowing	  the	  temperature	  with	  certainty	  makes	  the	  temperature	  sensor	  readings	  
and	  the	  event	  of	  fire	  independent	  

•  The	  smoke	  sensor	  reading	  is	  also	  irrelevant	  to	  the	  event	  of	  fire	  if	  Smoke	  is	  known	  for	  
sure	  
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•  Knowing	  the	  temperature	  with	  certainty	  makes	  the	  temperature	  sensor	  readings	  
and	  the	  event	  of	  fire	  independent	  

•  The	  smoke	  sensor	  reading	  is	  also	  irrelevant	  to	  the	  event	  of	  fire	  if	  Smoke	  is	  known	  for	  
sure	  

•  If	  there	  is	  no	  any	  info	  about	  Temp	  or	  sensor	  readings,	  Sun	  and	  Fire	  are	  independent	  

Sun	  



Hybrid Bayesian networks 
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•  In	  a	  hybrid	  Bayesian	  network,	  discrete	  and	  conCnuous	  variables	  coexist	  
•  Mixtures	  of	  truncated	  basis	  funcCons	  (MoTBFs)	  have	  been	  successfully	  used	  

in	  this	  context	  (Langseth	  et	  al.	  2012)	  
•  Mixtures	  of	  truncated	  exponenCals	  (MTEs)	  
•  Mixtures	  of	  polynomials	  (MoPs)	  

•  MoTBFs	  support	  efficient	  inference	  and	  learning	  in	  a	  staCc	  seeng	  
•  Learning	  from	  streams	  is	  more	  problemaCc	  
•  The	  reason	  is	  that	  they	  do	  not	  belong	  to	  the	  exponenCal	  family	  



The exponential family 
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•  A	  family	  of	  probability	  funcCons	  belongs	  to	  the	  exponenCal	  family	  
if	  it	  can	  be	  expressed	  as	  

Estadística Matemática
Lic. Matemáticas

Propiedades de Estadísticos

donde h es cualquier función real medible.

Definición 2.9 Un estadístico T (X) se dice que es completo si la familia de distribu-
ciones que induce es completa.

Nota 2.2 Si en la definición 2.8, la función h se restringe a aquellas que son acotadas,
se habla de familias acotadamente completas.

Por tanto, el concepto de acotadamente completo es un poco menos restrictivo que
el de completo.

Teorema 2.5 (Bahadur) Dada una muestra aleatoria X ∼ f(x; θ), si T (X) es un es-
tadístico suficiente y completo para θ, entonces T (X) es suficiente minimal.

Teorema 2.6 (Basu) Sea una muestra aleatoria X de una variable aleatoria con dis-
tribución de la familia F = {f(x; θ), θ ∈ Θ}, y T (X) un estadístico suficiente y acota-
damente completo para la familia F. Si U(X) es un estadístico ancillary, esto es, tiene
una distribución independiente de θ, entonces T (X) y U(X) son independientes.

Nota 2.3 El teorema anterior tiene un recíproco cierto: Si un estadístico U es inde-
pendiente de un estadístico suficiente T , entonces U es ancillary.

2.3. La familia exponencial

Definición 2.10 La familia de funciones de densidad o de masa de probabilidad Fθ =
{f(x; θ) | θ ∈ R} pertenece a la familia exponencial uniparamétrica si se puede ex-
presar de la forma

f(x; θ) = exp{Q(θ)T (x) +D(θ) + S(x)} (2.14)

siendo T (x) y S(x) funciones reales de la observación x, Q(θ) y D(θ) funciones reales del
parámetro θ y el soporte 2 de la distribución no depende de dicho parámetro desconocido.

La ecuación 2.14 puede expresarse, de forma equivalente, como

f(x; θ) = H(x)C(θ) exp{Q(θ)T (x)} (2.15)

Definición 2.11 La familia de funciones de densidad o de masa de probabilidad Fθ =
{f(x;θ) | θ ∈ Θ ⊆ Rk} pertenece a la familia exponencial k-paramétrica si

f(x;θ) = exp

{

k
∑

i=1

Qi(θ)Ti(x) +D(θ) + S(x)

}

(2.16)

2 Usualmente se considera como el soporte de una distribución el conjunto {x ∈ X | f(x; θ) > 0} aunque en el
caso de distribuciones de tipo continuo tal definición podría no ser adecuada ya que podríamos redefinir la
función de densidad en una cantidad numerable de puntos sin cambiar la distribución por lo que este
conjunto no estaría definido de forma única. Una definición más precisa es considerar que x ∈ X pertenece al
soporte si P{x− h < X < x+ h} > 0 para cualquier h > 0.

Prof. Carmelo Rodríguez Torreblanca
Dpto. Estadística y Mat. Aplicada. UAL

6

•  The	  Ti	  funcCons	  are	  the	  sufficient	  staCsCcs	  for	  the	  unknown	  
parameters,	  i.e.,	  they	  contain	  all	  the	  informaCon	  in	  the	  sample	  
that	  is	  relevant	  for	  esCmaCng	  the	  parameters	  

•  They	  have	  dimension	  1	  
•  We	  can	  “compress”	  all	  the	  informaCon	  in	  the	  stream	  so	  far	  as	  a	  

single	  number	  



Hybrid Bayesian networks. CLGs 
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Conditional Linear Gaussian networks

A Conditional Linear Gaussian (CLG) network is a hybrid Bayesian
network where

I The conditional distribution of each discrete variable X

D

given
its parents is a multinomial

I The conditional distribution of each continuous variable Z

with discrete parents X

D

and continuous parents X

C

, is

p(z |X
D

= x

D

,X
C

= x

C

) = N (z ;↵(x
D

) + �(x
D

)Tx

C

,�(x
D

))

for all x

D

and x

C

, where ↵ and � are the coefficients of a
linear regression model of Z given X

C

, potentially different for
each configuration of X

D

.
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CLGs	  belong	  to	  the	  exponenCal	  family	  



CLGs: Example 
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Conditional Linear Gaussian networks. Example

Y

W

TU

S

P(Y ) = (0.5, 0.5)
P(S) = (0.1, 0.9)
f (w |Y = 0) = N (w ;�1, 1)
f (w |Y = 1) = N (w ; 2, 1)
f (t|w , S = 0) = N (t;�w , 1)
f (t|w , S = 1) = N (t;w , 1)
f (u|w) = N (u;w , 1)
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CLGs: Example 

CAEPIA 2015  Albacete, November 9, 2015 23 

Conditional Linear Gaussian networks. Example
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§  Limita+on:	  discrete	  	  nodes	  are	  not	  allowed	  to	  have	  
conCnuous	  parents	  

§  This	  is	  not	  a	  big	  problem	  for	  Bayesian	  classifiers	  
	  
	  

	  
	  



Bayesian network classifiers 

§  The	  structure	  is	  usually	  restricted	  
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Figure 1: Structure of naive Bayes (a) and TAN (b) classifiers.

In general, there are several possible TAN structures for a given set of138

variables. The way to choose among them is to construct a maximum weight139

spanning tree containing the features, where the weight of each edge is the140

mutual information between the linked variables, conditional on the class141

(Friedman et al., 1997; Fernández et al., 2007). The mutual information142

between features X
i

and X

j

given the class is defined as143

I(X
i

, X

j

|C) =
X

xi,xj ,c

log
p(x

i

, x

j

|c)
p(x

i

|c)p(x
j

|c) . (4)

The details for constructing a TAN classifier model are given in Algorithm 1.144

Algorithm 1: TAN classifier
Input: A dataset D with variables X

1

, . . . , X

n

, C.
Output: A TAN classifier with root variable C and features X

1

, . . . , X

n

.
1 Calculate the conditional mutual information I(x

i

, x

j

|c) between each pair
of attributes, i 6=j.

2 Construct a complete undirected graph with nodes X
1

, . . . , X

n

and label
each link connecting X

i

to X

j

by I(x
i

, x

j

|c).
3 Build a maximum weighted spanning tree T .
4 Transform T into a directed tree by choosing a root variable, C, and setting
the direction of every link to be outward from it.

5 Construct a new network G, with node C being connected to each X

i

and
nodes X

1

, . . . , X

n

having the same links as in T .
6 Estimate an MTE density for C, and a conditional MTE density for each
X

i

, i = 1, . . . , n given its parents in G.
7 Let P be a set of estimated densities.
8 Let TAN be a Bayesian network with structure G and distribution P .

9 return TAN .

6

Naive	  Bayes	   Tree-‐augmented	  network	  (TAN)	  
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accuracy but in exchange of a higher number of parameters. To estimate the106

parameters of MTE densities, we followed the approach recently introduced107

in Langseth et al. (2014), which is based on least squares optimization, but108

limiting the number of exponential terms to 2, i.e., m = 2 in Eq. (2), in order109

to keep the complexity of the models moderate.110

A Bayesian network can be used as a classifier if it contains a class variable111

C and a set of continuous or discrete explanatory variables X
1

, . . . , X

n

, where112

an object with observed features x
1

, . . . , x
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will be classified as belonging to113

class c⇤ 2 ⌦
C

obtained as114
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where ⌦
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denotes the set of all posible values of C.115

Considering that p(c|x
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n

) is proportional to p(c)⇥ p(x
1

, . . . , x

n

|c),116

the specification of an n dimensional distribution for X
1

, . . . , X

n

given C is117

required in order to solve the classification problem, which implies a consider-118

able computational cost, as the number of parameters necessary to specify a119

joint distribution is exponential in the number of variables, in the worst case.120

However, this problem is simplified if we take advantage of the factorization121

encoded by the BN. Since building a network without any structural restric-122

tion is not always feasible (they might be as complex as the above mentioned123

joint distribution), networks with fixed or restricted and simple structures124

are utilized instead when facing classification tasks. The extreme case is the125

naive Bayes (NB) structure, where all the feature variables are considered126

independent given C, as depicted in Fig. 1(a). The strong assumption of127

independence behind NB models is somehow compensated by the reduction128

in the number of parameters to be estimated from data, since in this case, it129

holds that130

p(c|x
1

, . . . , x

n

) / p(c)
nY

i=1

p(x
i

|c) , (3)

which means that, instead of one n-dimensional conditional density, n one-131

dimensional conditional densities must be estimated.132

In TAN models, more dependencies are allowed, expanding the NB struc-133

ture by permitting each feature to have one more parent besides C. It is134

illustrated in Fig. 1(b). The increase in complexity, in both the structure135

and the number of parameters, results in richer and more accurate models in136

general (Friedman et al., 1997).137
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Reasoning over time: Dynamic 
Bayesian networks 
§  Temporal	  reasoning	  can	  be	  accommodated	  within	  BNs	  
§  Variables	  are	  indexed	  over	  Cme,	  giving	  rise	  to	  dynamic	  

Bayesian	  networks	  
§  We	  have	  to	  model	  the	  joint	  distribuCon	  over	  Cme	  

§  Dynamic	  BNs	  reduce	  the	  factorizaCon	  complexity	  by	  
adopCng	  the	  Markov	  assumpCon	  

	  

	  
	  

	  
	  

CAEPIA 2015  Albacete, November 9, 2015 26 

FP7-ICT 619209 / AMIDST

Page 10 of 63

Public

3.3 Probabilistic reasoning over time

Many domains, and in particular those being analysed in the AMIDST project, can
be seen as having strong internal structure. This will be evident by the domains be-
ing appropriately described using an object oriented language, either due to repetitive
substructures or substructures that can be naturally ordered in a superclass/subclass
hierarchy. Object oriented BNs [12] (OOBNs) are defined to take advantage of such in-
ternal model structure. In dynamic models, we also find this property because the same
part of the model is repeated over time (i.e., we have multiple objects of the same class
under the OOBNs language). A special type of OOBNs is the dynamic BN (DBN) [13],
which is used to model domains that evolve over time by representing explicitly the
temporal dynamics of the system. DBNs can also be readily understood as an extension
of standard BNs to the temporal domain.

Similarly to static BNs, we model our problem/system using a set of stochastic random
variables, denoted Xt, with the main di↵erence that variables are indexed here by a
discrete time index t. In this way, we explicitly model the state of the system at any
given time. Moreover, we always assume that the system is described at a fixed frequency,
and use Xa:b ⌘ Xa, Xa+1, . . . , Xb to denote the set of variables between two time points
a and b.

For reasoning over time, we need to model the joint probability p(X1:T ) which has the
following natural cascade decomposition:

p(X1:T ) =
TY

t=1

p(Xt|X1:t�1),

where p(Xt|X1:t�1) is equal to p(X1) for t = 1. As t increases, the conditional prob-
ability p(Xt|X1:t�1) becomes intractable. Similarly to static BNs, dynamic BNs allow
more compact factorization of the above joint probability. The first kind of conditional
independence assumption encoded by DBNs to reduce the factorization complexity is
the well-known Markov assumption. Under this assumption, the current state is inde-
pendent from the previous one given a finite number of previous steps and the resulting
models are referred to as Markov chains. Basically, a Markov chain can be defined on
either discrete or continuous variables X1:T . It exploits the following equality:

p(Xt|X1:t�1) = p(Xt|Xt�V :t�1)

where V � 1 is the order of the Markov chain. Figure 3.3 shows two examples of DBNs
corresponding to first-order (i.e., V = 1) and third-order (i.e., V = 3) Markov chains.

Among the di↵erent kinds of Markov chains, the first-order Markov chains are the
most widely used. They assume that knowing the present makes the future conditionally
independent from the past, that is, p(Xt|X1:t�1) = p(Xt|Xt�1). The problem is that this
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Figure 3.3: An example of DBNs assuming a third-order (above) and a first-order
(below) Markov property.

could be an unrealistic assumption in some problems leading to poor approximations of
the joint distribution. One could increase the Markov order to improve the approxima-
tion at the expenses of having a more complex model. Another alternative [14] would
be to increase the number of variables modelling the system. This alternative is usually
preferred if we have a sound understanding of the “physics” of the process being mod-
elled (e.g. predicting whether it is going to rain or not tomorrow based on the raining
evidence of the current day can be probably improve by considering the raining evidence
of previous days. Alternatively, we can also improve this prediction by considering in
the modelling the humidity and the pressure of the current day [14]).

An additional challenging problem is the specification of the conditional probabilities
at each time step of the DBNs. To deal with this problem, we usually assume that
changes in the world state are driven by a stationary process, that is, p(Xt+1|Xt) =
p(Xt|Xt�1) 8t 2 {1, . . . , T}.

In the following sub-sections, we will present in more details some basic examples of
DBNs, namely, hidden Markov models (Section 3.3.1), Kalman filters (Section 3.3.2),
and two-time slice DBNs (Section 3.3.3). Let us recall here that the graphical notation
employed when describing all these models is depicted in Figure 3.1.

3.3.1 Hidden Markov models

A hidden Markov model (HMM) is the simplest DBN including both hidden and observed
variables, such that the latent state of the process is represented by a single discrete
variable. More precisely, a HMM, shown in 3.4, defines a Markov chain over the hidden
variables X1:T . The observed variables, denoted by Y1:T , are dependent on the hidden
variables under the sensor Markov assumption, that is, P (Yt|X1:T ,Y1:T ) = P (Yt|Xt),
where P (Yt|Xt) represents the sensor (or observation) model.

In that way, the joint probability distribution over the observed and hidden variables
can be represented as:
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Figure 3.4: An example of a BN structure corresponding to a HMM.

P (X1:T ,Y1:T ) =
tY

t=1

P (Xt|Xt�1)P (Yt|Xt). (3.1)

Although most of our models will fit into this description of observed and hidden (state)
variables, there will be cases in which the transition model takes place in the observed
variables (see, e.g., the case of Cajamar), which in general simplifies the learning-
inference processes of the problem.

An extension of the HMM is the so-called input-output hidden Markov model (IOHMM)
shown in Figure 3.5. IOHMM incorporates an extra top layer of input variables Y0

1:T ,
which can be either continuous or discrete. The existing HMM layer of observed vari-
ables, Y1:T , is referred to as the output set of variables.

Figure 3.5: An example of a BN structure corresponding to an IO-HMM.

IOHMM is usually employed in supervised classification problems. In this case, both
input and output variables are known during training, but only the former is known
during testing. In fact, during testing, inference is performed to predict the output
variables at each time step. In AMIDST we use this model in a di↵erent way. In our
case, both set of input and output variables are always known, so that inference is only
performed to predict the latent variables. The input variables Y0

1:T are introduced as
a way to “relax” the stationary assumption, by explicitly introducing a dependency to
some observed information at each time slice, that is, the transition probability between

FP7-ICT 619209 / AMIDST

Page 12 of 63

Public

Figure 3.4: An example of a BN structure corresponding to a HMM.

P (X1:T ,Y1:T ) =
tY

t=1

P (Xt|Xt�1)P (Yt|Xt). (3.1)

Although most of our models will fit into this description of observed and hidden (state)
variables, there will be cases in which the transition model takes place in the observed
variables (see, e.g., the case of Cajamar), which in general simplifies the learning-
inference processes of the problem.

An extension of the HMM is the so-called input-output hidden Markov model (IOHMM)
shown in Figure 3.5. IOHMM incorporates an extra top layer of input variables Y0

1:T ,
which can be either continuous or discrete. The existing HMM layer of observed vari-
ables, Y1:T , is referred to as the output set of variables.

Figure 3.5: An example of a BN structure corresponding to an IO-HMM.

IOHMM is usually employed in supervised classification problems. In this case, both
input and output variables are known during training, but only the former is known
during testing. In fact, during testing, inference is performed to predict the output
variables at each time step. In AMIDST we use this model in a di↵erent way. In our
case, both set of input and output variables are always known, so that inference is only
performed to predict the latent variables. The input variables Y0

1:T are introduced as
a way to “relax” the stationary assumption, by explicitly introducing a dependency to
some observed information at each time slice, that is, the transition probability between



Particular cases of Dynamic 
Bayesian networks 
§  Input-‐output	  Hidden	  Markov	  models	  

	  
§  Linear	  dynamic	  systems:	  switching	  Kalman	  filter	  

	  
	  

	  
	  
	  

	  
	  

CAEPIA 2015  Albacete, November 9, 2015 29 

FP7-ICT 619209 / AMIDST

Page 12 of 63

Public

Figure 3.4: An example of a BN structure corresponding to a HMM.

P (X1:T ,Y1:T ) =
tY

t=1

P (Xt|Xt�1)P (Yt|Xt). (3.1)

Although most of our models will fit into this description of observed and hidden (state)
variables, there will be cases in which the transition model takes place in the observed
variables (see, e.g., the case of Cajamar), which in general simplifies the learning-
inference processes of the problem.

An extension of the HMM is the so-called input-output hidden Markov model (IOHMM)
shown in Figure 3.5. IOHMM incorporates an extra top layer of input variables Y0

1:T ,
which can be either continuous or discrete. The existing HMM layer of observed vari-
ables, Y1:T , is referred to as the output set of variables.

Figure 3.5: An example of a BN structure corresponding to an IO-HMM.

IOHMM is usually employed in supervised classification problems. In this case, both
input and output variables are known during training, but only the former is known
during testing. In fact, during testing, inference is performed to predict the output
variables at each time step. In AMIDST we use this model in a di↵erent way. In our
case, both set of input and output variables are always known, so that inference is only
performed to predict the latent variables. The input variables Y0

1:T are introduced as
a way to “relax” the stationary assumption, by explicitly introducing a dependency to
some observed information at each time slice, that is, the transition probability between

FP7-ICT 619209 / AMIDST

Page 13 of 63

Public

Xt and Xt+1 depends on the observed value Yt+1.

3.3.2 Kalman filters

Similar to the extension of the static BN model to hybrid domains, DBNs have likewise
been extended to continuous and hybrid domains. In purely continuous domains, where
the continuous variables follow linear Gaussian distributions, the DBN corresponds to
(a factorized version of) a Kalman filter (KF). The structure of a KF is exactly the same
as the one displayed in Figure 3.4 for the HMM, however with the restriction that all
variables should be continuous. In this case, the state variables can be a combination of
continuous variables with di↵erent dependences, and where the dynamics of the process
are assumed to be linear.

When modelling non-linear domains, the dynamics and observational distributions are
often approximated through, e.g., the extended Kalman filter, which models the system
as locally linear in the mean of the current state distribution. Another type of model
ensuring non-linear predictions with a more expressive representation is the switching
Kalman filter (SKF). The type of SKF that we are going to consider here includes an
extra discrete state variable that is able to use a weighted combination of the linear
sub-models. That is, the discrete state variable assigns a probability to each linear term
in the mixture, hence, representing the belief state as a mixture of Gaussians. In this
way, it can deal, to some extent, with violations of both the assumption of linearity and
Gaussian noise. Figure 3.6 depicts the graphical structure of this dynamic model.

Figure 3.6: An example of a switching Kalman filter. Zt represents the discrete state
variable modelling multiple KFs running in parallel.

Similarly to HMM, these models can be extended by introducing an extra top layer of
input variables to “relax” the stationary assumption, by explicitly introducing a depen-
dency to some observed information for the transition probability of the latent variables.
These models will be better explained in Section 4.3.
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3.3.3 Two-time slice dynamic Bayesian networks

In general, DBNs can model arbitrary distributions over time. However, in AMIDST,
we will especially focus on the so-called two-time slice DBNs (2T-DBNs). 2T-DBNs
are characterised by an initial model representing the initial joint distribution of the
process and a transition model representing a standard BN repeated over time. This
kind of DBN model satisfies both the first-order Markov assumption and the stationarity
assumption. Figure 3.7 shows an example of a graphical structure of a 2T-DBN model.

Figure 3.7: An example of a BN structure corresponding to a 2T-DBN.

In a 2T-DBN, the transition distribution is represented as follows:

p(Xt+1|Xt) =
Y

Xt+1

2Xt+1

p(Xt+1|Pa(Xt+1)),

where Pa(Xt+1) refers to the set of parents of the variable Xt+1 in the transition model,
which can be variables either at the same or the previous time step.

Note that a HMM, KF or SKF are particular cases of a 2T-DBN. Equally, some 2T-
DBNs can be casted to these standard models by grouping variables. For example, the
2T-DBN shown in Figure 3.7 can be considered a SKF (see Figure 3.6) if we group Z 0

t

and Z 00
t in a single and bigger variable Zt ⌘ Z 0

t ⇥ Z 00
t (and likewise Zt+1 ⌘ Z 0

t+1 ⇥ Z 00
t+1).

However, it is usually preferred to factorise the transition distribution by taking the 2T-
DBN graphical structure into account. This is due to the fact that we can take advantage
of the sparseness of the model, especially when dealing with high-dimensional problems.
For instance, in our considered example, the transition probability of the equivalent
SKF model would be simply expressed as p(Zt+1|Zt) = p(Z 0

t+1, Z
00
t+1|Z 0

t, Z
00
t ). However,

by taking the 2T-DBN graphical structure into account, this transition probability could
be much more compactly expressed as p(Zt+1|Zt) = p(Z 00

t+1)p(Z
0
t+1|Z 0

t). That is, instead
of considering the joint probability distribution, the set of (conditional) independences
encoded in the network structure is exploited.
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are characterised by an initial model representing the initial joint distribution of the
process and a transition model representing a standard BN repeated over time. This
kind of DBN model satisfies both the first-order Markov assumption and the stationarity
assumption. Figure 3.7 shows an example of a graphical structure of a 2T-DBN model.

Figure 3.7: An example of a BN structure corresponding to a 2T-DBN.

In a 2T-DBN, the transition distribution is represented as follows:

p(Xt+1|Xt) =
Y

Xt+1

2Xt+1

p(Xt+1|Pa(Xt+1)),

where Pa(Xt+1) refers to the set of parents of the variable Xt+1 in the transition model,
which can be variables either at the same or the previous time step.

Note that a HMM, KF or SKF are particular cases of a 2T-DBN. Equally, some 2T-
DBNs can be casted to these standard models by grouping variables. For example, the
2T-DBN shown in Figure 3.7 can be considered a SKF (see Figure 3.6) if we group Z 0

t

and Z 00
t in a single and bigger variable Zt ⌘ Z 0

t ⇥ Z 00
t (and likewise Zt+1 ⌘ Z 0

t+1 ⇥ Z 00
t+1).

However, it is usually preferred to factorise the transition distribution by taking the 2T-
DBN graphical structure into account. This is due to the fact that we can take advantage
of the sparseness of the model, especially when dealing with high-dimensional problems.
For instance, in our considered example, the transition probability of the equivalent
SKF model would be simply expressed as p(Zt+1|Zt) = p(Z 0

t+1, Z
00
t+1|Z 0

t, Z
00
t ). However,

by taking the 2T-DBN graphical structure into account, this transition probability could
be much more compactly expressed as p(Zt+1|Zt) = p(Z 00

t+1)p(Z
0
t+1|Z 0

t). That is, instead
of considering the joint probability distribution, the set of (conditional) independences
encoded in the network structure is exploited.
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§  There	  are	  three	  ways	  of	  querying	  a	  BN	  
§  Belief	  updaCng	  (probability	  propagaCon)	  
§ Maximum	  a	  posteriori	  (MAP)	  
§ Most	  probable	  explanaCon	  (MPE)	  
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Querying a Bayesian network (I)

I Probabilistic inference: Computing the posterior distribution of
a target variable:

p(x
i

|x
E

) =

X

x

D

Z

x

C

p(x, x
E

)dx

C

X

x

D

i

Z

x

C

i

p(x, x
E

)dx

C

i

ECSQARU 2015, Compiegne, July 17, 2015 6
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Querying a Bayesian network (II)

I Maximum a posteriori (MAP): For a set of target variables X

I

,
the goal is to compute

x

⇤
I

= arg max
x

I

p(x
I

|X
E

= x

E

)

where p(x
I

|X
E

= x

E

) is obtained by first marginalizing out
from p(x) the variables not in X

I

and not in X

E

I Most probable explanation (MPE): A particular case of MAP
where X

I

includes all the unobserved variables

ECSQARU 2015, Compiegne, July 17, 2015 8
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•  Let’s	  denote	  by	  	  	  	  	  	  	  the	  posterior	  probability	  for	  the	  target	  
variable,	  and	  

	  
	  
•  Then,	  

	  
Therefore,	  we	  have	  transformed	  the	  problem	  of	  probability	  
propagaCon	  into	  esCmaCng	  the	  expected	  value	  of	  a	  random	  
variable	  from	  a	  sample	  drawn	  from	  a	  distribuCon	  of	  our	  own	  
choice	  

Scalable approximate inference in CLG networks 5
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R
b

a

h(x
i

)dx
i

with

h(x
i

) =
X

xD2⌦XD

Z

xC2⌦XC

p(x;x
E

)dx
C

.

Then, we can write ✓ as

✓ =

Z
b

a

h(x
i

)dx
i

=

Z
b

a

h(x
i

)

p

⇤(x
i

)
p

⇤(x
i

)dx
i

= E

p

⇤


h(X⇤

i

)

p

⇤(X⇤
i

)

�
, (6)

where p

⇤ is a probability density function on (a, b) called the sampling distribu-
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is an unbiased estimator of ✓.
As ✓̂1 is unbiased, the error of the estimation is determined by its variance,
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The key point in importance sampling is the selection of the sampling distri-
bution since, according to Eq. (8), it determines the accuracy of the estimation.
The rule is that the closer p⇤ is to h, the lower the variance is [4].

A simple procedure for selecting the sampling distribution is the so-called ev-

idence weighting (EW) [5]. In EW, each variable is sampled from a conditional
density given its parents in the network. The sampling order is therefore from
parents to children. The observed variables are not sampled, but instead they are
instantiated to the observed value. A version of this algorithm in which the con-
ditional densities are dynamically updated during the simulation procedure was
introduced in [19]. In this paper we will only use static sampling distributions,
as that is the fastest alternative.

Hence, adopting EW means that h involves the product of all the conditional
distributions in the Bayesian network, while p

⇤ involves the same conditional
distributions except those ones corresponding to observed variables.

Note that the denominator in Eq. (2) is just the probability of evidence, which
has to be estimated as well in order to have an answer to a query (recall that ✓̂1
is just an estimator of the numerator). It was shown in [4] that numerator and
denominator can be estimated using the same sample. To achieve this, instead of
taking a sampling distribution defined on (a, b) it must be defined on the entire
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ditional densities are dynamically updated during the simulation procedure was
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distributions except those ones corresponding to observed variables.
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has to be estimated as well in order to have an answer to a query (recall that ✓̂1
is just an estimator of the numerator). It was shown in [4] that numerator and
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•  The	  expected	  value	  can	  be	  esCmated	  using	  a	  sample	  mean	  
esCmator.	  Let	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  be	  a	  sample	  drawn	  from	  
p*.	  Then	  a	  consistent	  unbiased	  esCmator	  of	  	  	  	  	  is	  given	  by	  	  

•  In	  AMIDST,	  the	  sampling	  distribuCon	  is	  formed	  by	  the	  
condiConal	  distribuCons	  in	  the	  network	  (Evidence	  weighCng)	  
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The key point in importance sampling is the selection of the sampling distri-
bution since, according to Eq. (8), it determines the accuracy of the estimation.
The rule is that the closer p⇤ is to h, the lower the variance is [4].

A simple procedure for selecting the sampling distribution is the so-called ev-

idence weighting (EW) [5]. In EW, each variable is sampled from a conditional
density given its parents in the network. The sampling order is therefore from
parents to children. The observed variables are not sampled, but instead they are
instantiated to the observed value. A version of this algorithm in which the con-
ditional densities are dynamically updated during the simulation procedure was
introduced in [19]. In this paper we will only use static sampling distributions,
as that is the fastest alternative.

Hence, adopting EW means that h involves the product of all the conditional
distributions in the Bayesian network, while p

⇤ involves the same conditional
distributions except those ones corresponding to observed variables.

Note that the denominator in Eq. (2) is just the probability of evidence, which
has to be estimated as well in order to have an answer to a query (recall that ✓̂1
is just an estimator of the numerator). It was shown in [4] that numerator and
denominator can be estimated using the same sample. To achieve this, instead of
taking a sampling distribution defined on (a, b) it must be defined on the entire
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MAP	  is	  similar	  to	  probability	  propagaCon	  but:	  

	  
•  First	  marginalize	  out	  by	  sum/integral	  (sum	  phase)	  
•  Then	  maximize	  (max	  phase)	  
	  
	  

Constrained	  order	  -‐>	  higher	  complexity	  



MAP in CLG networks 

CAEPIA 2015  Albacete, November 9, 2015 40 

MAP	  in	  the	  AMIDST	  Toolbox	  
	  
•  Hill	  Climbing	  (global	  and	  local	  change)	  
•  Simulated	  Annealing	  (global	  and	  local	  change)	  
•  Sampling	  
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Task 3.3. Inference in dynamic networks

Inference in DBNs faces the problem of entanglement:

All variables used to encode the belief state at time t = 2 become
dependent after observing {e

0

, e
1

, e
2

}.

AMIDST, Review, Luxembourg, January 22, 2015 16
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•  VariaConal	  message	  passing	  based	  on	  the	  variaConal	  
approximaCon	  to	  a	  posterior	  distribuCon	  p(xI)	  which	  
is	  defined	  as	  	  

	  
•  Factored	  fronCer,	  which	  assumes	  	  independence	  of	  
the	  nodes	  connecCng	  to	  the	  past	  given	  the	  
observaCons	  

Task 3.3. Sketch of algorithm

I Inference in DBNs will be approached following a Bayesian
formulation + Variational Bayes.

I The variational approximation to a posterior distribution p(xI )
is defined as

q⇤(xI ) = arg min
q2Q

D(q(xI )||p(xI )),

where D(q||p) is the KL divergence from q to p.
I An alternative is to focus on D(p(xI )||q(xI )), which

corresponds to expectation propagation.
I The optimal variational distribution is computed iteratively.
I Scalability is addressed using a message passing scheme based

on the network structure.
AMIDST, Review, Luxembourg, January 22, 2015 17



Learning CLG networks from 
data 

§  Learning	  the	  structure	  
§  Methods	  based	  on	  condiConal	  independence	  tests	  
§  Score	  based	  techniques	  
	  

§  Es+ma+ng	  the	  parameters	  
§  Bayesian	  approach	  
§  FrequenCst	  approach	  (maximum	  likelihood)	  
	  
	  

	  
	   CAEPIA 2015  Albacete, November 9, 2015 44 



Learning CLG networks from 
data 
	  
§  Bayesian	  parameter	  learning	  

§  Parameters	  are	  considered	  random	  variables	  rather	  than	  fixed	  
quanCCes	  

§  A	  prior	  distribuCon	  is	  assigned	  to	  the	  parameters,	  represenCng	  
the	  state	  of	  knowledge	  before	  observing	  the	  data	  

§  The	  prior	  is	  updated	  in	  the	  light	  of	  new	  data.	  
§  The	  Bayesian	  framework	  naturally	  deals	  with	  data	  streams	  
	  
	  

	  
	  

p(✓|d1, . . . , dn, dn+1) / p(dn+1|✓)p(✓|d1, . . . , dn)
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Parameter learning by inference

Simple example:
I Random walk over Y1,Y2, . . .

I
f (yt |yt�1) ⇠ N(yt�1, ⌧�1).

I Precision ⌧ is unknown.
Y1 Y2 Y3 Y4 Y5

⌧

↵ �

The Bayesian solution:

I Model unknown parameters as random variables.
I Use Bayes formula with “clever” distribution families:

f (⌧ |y1:T , a, b) =
f (⌧ |a, b)

QT
t=1 f (yt |yt�1, ⌧)

f (y1:T |a, b)
.

Efficient inference leads to efficient learning!

AMIDST, Review, Luxembourg, January 22, 2015 12
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Parameter learning by inference

Simple example:
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I
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Y1 Y2 Y3 Y4 Y5

⌧
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Exploratory	  analysis	  
Part	  III	  
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Exploratory analysis 

§  Exploratory	  analysis	  helps	  us	  in	  tesCng	  model	  assumpCons	  
§  It	  also	  improves	  the	  modeler's	  knowledge	  about	  the	  problem	  

and	  its	  nature	  
§  Dynamic	  Bayesian	  networks	  aim	  at	  modeling	  complex	  Cme	  

correlaCons	  
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Sample correlogram 

§  Let	  x1,...,xT be	  a	  univariate	  Cme	  series.	  The	  sample	  
autocorrelaCon	  coefficient	  at	  lag	  v	  is	  given	  by	  

§  It	  represents	  Pearson’s	  correlaCon	  coefficient	  between	  series	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  and	  
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DBNs obviously share the computational di�culties of regular BNs in inference tasks.
However, in the dynamic case, we are also faced with the entanglement problem, i.e.,
after a certain time step, all variables describing the current system state will become
dependent, and we therefore cannot represent the exact probability distribution over the
current state (the belief state) in a compact and factorized form. To deal with this prob-
lem, approximate methods (including approximate factorizations of the joint probability
distribution describing the system state) [15] as well as sampling based techniques in the
form of particle filtering [16] are usually used.

3.4 Preliminary data analysis

The motivation behind using a preliminary data analysis is first to test some assumptions
supporting the models elicited by the experts in the di↵erent use cases, and second, to
further complement our understanding about the nature of the problem to be modelled.
In the following sub-sections, we will introduce the set of tools, namely sample correlo-
grams, sample partial correlograms, histograms, and bivariate contour plots, that allows
us to get some initial insights into both structural and distributional DBN assumptions.

3.4.1 Sample correlograms and sample partial correlograms

A DBN mainly aims to model complex multivariate time series. By using sample correl-
ograms and sample partial correlograms, we will try to test if the available data supports
the temporal correlation between variables assumed by the DBN model, i.e., the tempo-
ral links between variables. However, these tools will only allow us to look at univariate
time series, which may strongly limit the extent of the extracted conclusions. However,
despite its limitations, this analysis will give us some interesting insights which usually
cannot be elicited from experts, as we will see below for the di↵erent use cases.

• Sample correlograms: Let x1, ..., xT be a univariate time series. The sample
autocorrelation coe�cient at lag v is given by

⇢̂v =

PT�v
t=1 (xt � x̄)(xt+v � x̄)

PT
t=1(xt � x̄)2

where x̄ is the sample mean and T is the total length of the considered data. The
plot of p̂v versus v, for v = 1, . . . ,M for some maximum M is called the sample
correlogram of the data. p̂v corresponds to the Pearson correlation between the
series {xt}t2{1,...,T} and {xt+v}t+v2{1,...,T}.

Sample correlograms can be interpreted as a way to measure the strength of the
following unconditional dependences: Xt 6? Xt+v for some lag v � 1. When ⇢̂v is
close to zero, this indicates that there exists a strong unconditional independence
between Xt and Xt+v. However, when ⇢̂v is close to either 1 or �1, this indicates
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The	  sample	  correlogram	  is	  the	  plot	  of	  the	  sample	  
autocorrelaCon	  vs.	  v	  	  
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Therefore, sample partial correlograms can be seen as a tool to test the order of
the Markov chain generating the time data sequence, with all the same caveats
expressed for the sample correlogram.

(a) Correlogram for i.i.d. data (b) Correlogram for a time series data

(c) Partial correlogram for i.i.d. data (d) Partial correlogram for a time series data

Figure 3.8: Examples of sample correlograms and sample partial correlograms for i.i.d.
and time series data.

3.4.2 Histograms and bivariate contour plots

The aim here is to use histograms and bivariate contour plots in order to get insights
into the probability distributions of the proposed models.

• Histograms: Despite the fact that this tool is quite useful in a static context,
it is rather limited in dynamic models. For example, let us assume we have a
time series x1, . . . , xT and our histogram shows that the empirical distribution of
the variable when we aggregate the data samples over time looks like a mixture
of Gaussian distributions. There are at least two possibilities that can give rise
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§  Consider	  the	  regression	  model	  

§  Let	  	  	  	  	  	  	  	  	  	  denote	  the	  residuals	  
§  The	  sample	  parCal	  auto-‐correlaCon	  coefficient	  of	  lag	  v	  is	  the	  

standard	  sample	  auto-‐correlaCon	  between	  the	  series	  	  	  	  	  	  	  	  	  	  	  	  	  
{xt−v}t−v∈{1,...,T} and {et,v}t∈{1,...,T} 

 
§  It can be seen as the correlation between Xt and Xt−v 

after having removed the common linear effect of the 
data in between. 
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that there is a strong correlation or dependency between Xt and Xt+v. However,
once again, we should never forget that when computing these Pearson correlation
coe�cients, we are making a strong assumption about the normality of the data,
which might not hold. Intuitively, they can be used to get an idea of the type of
the “memory” encoded in the time series, di↵erentiating between short-term and
long-term memory.

Figure 3.8 shows examples of sample correlograms for two di↵erent types of data
sets: Figure 3.8(a) shows a sample correlogram for a sequence of 50 i.i.d. data
records sampled according to a Gaussian distribution with zero mean and unit
variance xt ⇠ N (0, 1); and Figure 3.8(b) shows a sample correlogram for a sequence
of 50 data samples distributed as xt = xt�1 + ✏, such that ✏ ⇠ N (0, 1). As it can
be seen, the correlogram for the i.i.d. data has values close to zero for all lags.
However, for time series data, the correlogram clearly identifies the presence of
a temporal relationship in the data. As expected, the correlation decreases with
the size of the lag, and how quickly it decreases depends on the strength of the
temporal relationship, or more intuitively, the “memory” of the time series. In the
previous example, this “memory” inversely depends of the variance of the “white
noise” ✏ value.

• Sample partial correlograms: Let Xt be a random variable associated to X
taking values at time t. We can build the following regression problem:

Xt = a0 + a1Xt�1 + a2Xt�2 + ...av�1Xt�v+1

In addition, let et,v denotes the residuals of this regression problem (i.e., the error
when estimating Xt using a linear combination of v�1 previous observations). The
sample partial auto-correlation coe�cient of lag v, denoted as ✓̂v, is the standard
sample auto-correlation between the series {xt�v}t�v2{1,...,T} and {et,v}t2{1,...,T}.
Intuitively, the sample partial auto-correlation coe�cient of lag v can be seen as
the correlation between Xt and Xt�v after having removed the common linear
e↵ect of the data in between.

As previously, we plot in Figure 3.8 (c) and (d) the sample partial correlograms
for the same two data sequences presented above. In the case of i.i.d. data, we can
see again that the partial correlogram does not show any sign of partial correlation
between the data sequence samples. However, for time series data, the partial
correlogram takes a high value for v = 1 (for this lag value it is equal to the sample
correlogram), but then becomes close to zero for v values higher than 1. The
sample partial correlogram can be interpreted as a way to measure the strength
of the following conditional dependence: Xt 6? Xt+v|X1, ..., Xt+v�1 for some lag
v > 1. Accordingly, the sample partial correlogram correctly identifies that we
have the following conditional independencies: Xt ? Xt+2|Xt+1 in the considered
time series data.
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Therefore, sample partial correlograms can be seen as a tool to test the order of
the Markov chain generating the time data sequence, with all the same caveats
expressed for the sample correlogram.

(a) Correlogram for i.i.d. data (b) Correlogram for a time series data

(c) Partial correlogram for i.i.d. data (d) Partial correlogram for a time series data

Figure 3.8: Examples of sample correlograms and sample partial correlograms for i.i.d.
and time series data.

3.4.2 Histograms and bivariate contour plots

The aim here is to use histograms and bivariate contour plots in order to get insights
into the probability distributions of the proposed models.

• Histograms: Despite the fact that this tool is quite useful in a static context,
it is rather limited in dynamic models. For example, let us assume we have a
time series x1, . . . , xT and our histogram shows that the empirical distribution of
the variable when we aggregate the data samples over time looks like a mixture
of Gaussian distributions. There are at least two possibilities that can give rise
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expressed for the sample correlogram.

(a) Correlogram for i.i.d. data (b) Correlogram for a time series data

(c) Partial correlogram for i.i.d. data (d) Partial correlogram for a time series data

Figure 3.8: Examples of sample correlograms and sample partial correlograms for i.i.d.
and time series data.

3.4.2 Histograms and bivariate contour plots

The aim here is to use histograms and bivariate contour plots in order to get insights
into the probability distributions of the proposed models.

• Histograms: Despite the fact that this tool is quite useful in a static context,
it is rather limited in dynamic models. For example, let us assume we have a
time series x1, . . . , xT and our histogram shows that the empirical distribution of
the variable when we aggregate the data samples over time looks like a mixture
of Gaussian distributions. There are at least two possibilities that can give rise
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to this finding: i) Xt is distributed according to a mixture of Gaussians where
each Gaussian component depends on Xt�1; and ii) there is a discrete hidden
variable Zt that influences Xt and is the one responsible for generating the di↵erent
mixture components. In any case, however, we could deduce that using Gaussian
distributions would be appropriate.

Thus, despite its limitations in dynamic contexts, we will resort to the use of
histograms whenever we find that they could shed some lights on the underlying
sample distribution of the sample.

• Bivariate contour plots: The contour plots of the empirical bivariate distribu-
tion of Xt versus Xt�1 can show many relevant information, such as the presence
of linear relationships between variables or if we can assume they are normally
distributed, etc. In Figure 3.9, we plot the bivariate contour plot for the i.i.d and
time series data described above. As it can be seen, the bivariate contour plot
for time series data shows how Xt and Xt+1 seems to be distributed according
to a bivariate normal with a covariance matrix that displays a strong degree of
correlation. In the case of i.i.d. data, the bivariate contour plot does not reveal
any temporal dependence between Xt and Xt�1.

(a) i.i.d. data (b) Time series data

Figure 3.9: Bivariate contour plots for a set of i.i.d. and time series data.

Finally, note that the usefulness of all these tools is limited due to its generative nature.
That is, they do not explicitly target the prediction problem for the di↵erent use cases.
After performing a proper evaluation of the considered static and dynamic models, it
will be possible to re-adjust, if needed, our current assumptions.
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§  R	  has	  become	  a	  successful	  tool	  for	  data	  analysis	  
§  Well known in Statistics, Machine Learning and Data 

Science communities 
§  “Free software environment for statistical computing and 

graphics” 

hpp://www.cran.r-‐project.org	  



The Rstudio IDE 
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hpp://www.rstudio.com	  



The R statistical software 
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•  Exploratory	  analysis	  demo	  using	  R	  
•  Latex	  document	  generaCon	  from	  R	  

using	  Sweave	  



The	  Ramidst	  package	  
Part	  IV	  
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The Ramidst package 
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§  The	  package	  provides	  an	  interface	  for	  using	  the	  
AMIDST	  toolbox	  funcConality	  from	  R	  

§  The interaction is actually carried out through the rJava 
package 

§  So far Ramidst provides functions for inference in static 
networks and concept drift detection using DBNs 

 
§  Extensive extra functionality available thanks to the 

HUGIN link 



The AMIDST toolbox 
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•  Scalable	  framework	  for	  data	  stream	  processing.	  
•  Based	  on	  ProbabilisCc	  Graphical	  Models.	  
•  Unique	  FP7	  project	  for	  data	  stream	  mining	  using	  PGMs.	  
•  Open	  source	  so[ware	  (Apache	  So[ware	  License	  2.0).	  



The AMIDST toolbox official 
website 
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hZp://amidst.github.io/toolbox/	  



Available for download at GitHub 
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§  Download:	  
	  :>	  git	  clone	  hZps://github.com/amidst/toolbox.git	  

§  Compile:	  
	  :>	  ./compile.sh	  

§  Run:	  
	  :>	  ./run.sh	  <class-‐name>	  



Please give our project a “star”! 
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Processing data streams in R 
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§  RMOA	  
§  MOA	  is	  a	  state-‐of-‐the-‐art	  tool	  for	  data	  stream	  mining.	  
§  RMOA	  provides	  funcConality	  for	  accessing	  MOA	  from	  R	  
§  Several	  staCc	  models	  are	  available	  
§  They	  can	  be	  learnt	  from	  streams	  
§  Streams	  can	  be	  created	  from	  csv	  files	  or	  from	  different	  R	  objects	  

hZp://moa.cms.waikato.ac.nz	  



The Ramidst package 
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Inference	  and	  concept	  dri[	  demo	  
using	  Ramidst	  
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