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Abstract�A Vine Estimation of Distribution Algo-
rithm (VEDA) is a recently proposed optimization
procedure built on top of a probabilistic graphical
model called vine. The �rst target of vines was un-
certainty analysis with high dimensional dependence
modeling.
The aim of this communication is to draw a path

through a simple set of experiments, from the Uni-
variate Marginal Distribution Algorithm to VEDA.
Four algorithms are investigated in relation to their
ability to deal with both weak and strong correlated
variables in continuous unconstrained optimization
problems. The results show that the models comple-
ment each other, although VEDA is the most promis-
ing algorithm.

Keywords� estimation of distribution algorithms,
copula, vine.

I. Introduction

The normal distribution has been commonly used
to model real-valued search distributions in Esti-
mation of Distribution Algorithms (EDAs) [1], [2],
[3], [4]. Unfortunately, it is often inconsistent with
empirical evidence and leads to the construction of
wrong models. Copula functions [5] can be used to
tackle these problems, because they allow to build
more realistic search distributions. However, the use
of multivariate copula functions alone su�ers from
several shortcomings [6] that can be overcome using
vines [7], [8]. Vines are powerful probabilistic graph-
ical models that represent a rich variety of patterns
of dependence by combining bivariate copulas of dif-
ferent families of distributions.
In this work, various models based on copula the-

ory are used in EDAs: two algorithms are built
around the multivariate product and normal cop-
ulas while the other two are based on vines. The
algorithms are tested on a set of arti�cial test func-
tions and a protein docking problem from real-world.
The numerical results show that vine-based EDAs
are better endowed to optimize problems with dif-
ferent patterns of dependence.
The remainder of the paper is organized as follows.

Section II introduces the necessary concepts of copu-
las and vines. It also connects the algorithms inves-
tigated in the paper from the perspective of copulas.
Section III describes the VEDA. Our empirical inves-
tigation is reported in Section IV and the conclusions
are given in Section V.
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II. From UMDA to VEDA

To begin with, we present some de�nitions from
copula theory [5], [9].
Copulas separate the e�ect of dependence and

margins in a joint distribution [8]. In this sense,
copulas are functions that link multivariate distribu-
tions to their margins. This de�nition is mathemat-
ically supported by the Sklar's theorem [10], which
we informally present below.
Let X = (X1, . . . ,Xn) be a vector of continuous

random variables with joint density function f and
joint cumulative distribution function F , both de-
�ned on Rn. Also let x = (x1, . . . ,xn) be an ob-
servation of X and F1, . . . , Fn denote the univariate
marginal distributions of F . The copula associated
with F is a distribution function with uniform mar-
gins C : [0, 1]

n → [0, 1] that satis�es

F (x1, . . . , xn) = C (F (x1) , . . . , F (xn))

and

C (u1, . . . , un) = F
(
F

(−1)
1 (u1) , . . . , F (−1)

n (un)
)
.

A remarkable result states the uniqueness of
C (u1, . . . , un) for continuous F .

A. Product Copula

An important copula is the product copula, which
is given by

CI (u1, . . . , un) = u1. . . . .un. (1)

Here, the interesting point is that random variables
are independent if and only if their underlying copula
is the product. This result follows immediately from
the Sklar's theorem.
The UMDA proposed in [2] assumes a model

of independence of normal marginal distributions.
Therefore, an EDA based on the product copula is
a generalization of the UMDA, which also supports
other types of marginal distributions, including non-
parametric distributions [11].

B. Normal Copula

Besides UMDA, in [2] the authors also proposed
an EDA based on the multivariate normal distribu-
tion. They called it Estimation of the Multivari-
ate Normal Algorithm (EMNA). It turns out that,
indeed EMNA can be also reformulated in copula
terms: a normal copula + normal margins.
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Fig. 1: Four-dimensional C-vine (a) and D-vine (b). In a C-vine, each tree Tj has a unique node that is
connected to n− j edges. In a D-vine, no node in any tree is connected to more than two edges.

The Gaussian Copula Estimation of Distribution
Algorithm (GCEDA) introduced in [11], [12] is based
on the multivariate normal (or Gaussian) copula,

CN (u1, . . . , un;R) = ΦR

(
Φ−1 (u1) , . . . ,Φ−1 (un)

)
,

(2)
where ΦR is the standard multivariate normal distri-
bution function with correlation matrix R, and Φ−1

denotes the inverse of the standard univariate nor-
mal distribution. This copula allows the construc-
tion of multivariate distributions with non-normal
margins. If this is the case, the joint density is no
longer the multivariate normal, though the normal
dependence structure is preserved. Therefore, with
normal margins, GCEDA is equal to EMNA, other-
wise they are di�erent.
In GCEDA with normal margins, the correla-

tion matrix is estimated by maximum likelihood.
The generation of a new individual starts with the
simulation of a vector (u1, . . . , un) from the mul-
tivariate normal copula [13]. Then, each compo-
nent xi of the new individual is determined as xi =
F̂−1i

(
ui; µ̂i, σ̂

2
i

)
.

C. Archimedean Copulas

Several other multivariate copula-based EDAs
have been proposed in recent years [14], [15], [16].
In general, the idea underlying these works is the
use of the so-called Archimedean copulas [5]. Most
of the available parametric copulas are bivariate, but
Archimedean copulas can be easily generalized to n
dimensions. Unfortunately, in these cases only one
scalar parameter quanti�es the overall multivariate
dependence, which limits the use of this type of cop-
ulas in EDAs. The reader is referred to [6] for more
details on these shortcomings.

D. Vines

Fortunately, there is an alternative approach to
the solution of the above shortcomings: Vines [7],
[8]. These are dependence models of a multivari-
ate distribution function based on a decomposition
of f (x1, . . . , xn) into bivariate copulas and marginal
densities.

A vine on n variables is a nested set of trees
T1, . . . , Tn−1, where the edges of tree j are the nodes
of the tree j + 1 with j = 1, . . . , n − 2. Two spe-
cial types of vines are C-vines (canonical vines) and
D-vines (drawable vines). Figure 1 shows a four-
dimensional C-vine and D-vine. In particular, the
C-vine density is given by

n∏
k=1

f (xk)

n−1∏
j=1

n−j∏
i=1

cj,j+i|i,...,j−1, (3)

and the D-vine density is given by

n∏
k=1

f (xk)

n−1∏
j=1

n−j∏
i=1

ci,i+j|i+1,...,i+j−1, (4)

where j identi�es the trees and i denotes the edges
in each tree.
The arguments of the pair-copulas in (3) and (4)

are conditional distributions of the form F (x | v)
determined by the subscripts of the copula. In [17]
it is shown that

F (x | v) =
∂Cxvj |v−j

(F (x | v−j) , F (vj | v−j))
∂F (vj | v−j)

,

(5)
where Cxvj |v−j

is a bivariate copula distribution
function, v is a n-dimensional vector, vj is one com-
ponent of v and v−j denotes the v-vector exclud-
ing the j component. The recursive evaluation of
F (x | v) yields the expression

F (x | v) =
∂Cxv (Fx (x) , Fv (v))

∂Fv (v)
.

When x and v are uniform, F (x | v) reduces further
to F (x | v) = ∂Cxv(x,v)/∂v. Since the bivariate copu-
las may belong to di�erent distribution families, the
h−function,

h (x, v, θ) = F (x | v) =
∂Cxv (x, v, θ)

∂v
, (6)

is de�ned to facilitate the computation of F (x | v) ,
where θ denotes the set of parameters for the copula
of the joint distribution function of x and v. To



use a bivariate copula in a vine we must de�ne the
h−function and its inverse with respect to the �rst
variable.
We use vines to create a new class of EDAs. The

next section gives a short introduction.

III. VEDA

Vine Estimation of Distribution Algorithms
(VEDAs) [18], [19], [20] are a class of EDAs that uses
vines to model the search distributions. CVEDA
and DVEDA are based on C-vine and D-vine, re-
spectively.
The methods for the construction of C-vines and

D-vines have been developed in [6]. They consist of
the following steps:
1. Select the structure of the C-vines and D-vines.
The construction of a vine begins by determining
the empirical Kendall's tau for the bivariate depen-
dencies that will be explicitly modeled in the �rst
tree. This is determined by a variable order, which
is chosen by a greedy heuristic.
In a C-vine, the node that maximizes the sum of the
weights of its edges to the other nodes is chosen as
the root of the �rst tree. The same applies for the
remainder trees.
In a D-vine, the �nal structure is completely deter-
mined by the structure of the �rst tree. The prob-
lem of constructing the �rst tree consists in �nding
the maximum weighted sequence of the variables.
In [21], this problem is transformed into a traveling
salesman problem (TSP) instance. For e�ciency, we
�nd an approximate solution of the TSP using the
cheapest insertion heuristic [22].
The cost of the construction of these models in-
creases with the number of variables. However, the
number of trees might be reduced if conditional in-
dependence is detected. In [18] we apply the trun-
cation strategy proposed in [21] to deal with this
problem. This strategy carries out a model selection
procedure.
2. Select the pair-copula types in the factorization
and estimate the copula parameters.
(a) Determine the pair-copulas in the �rst tree
from the original data.
(b) Compute observations by evaluating the condi-
tional distribution functions of the form F (x|y) for
the second tree according to the h-functions of the
copulas in the �rst tree.
(c) Determine the pair-copulas in the second tree
from observations obtained in step (b).
(d) Repeat steps (b) and (c) for the following trees.

To select a bivariate copula that �ts the data appro-
priately we proceed as follows. The �rst step is to
apply the independence test proposed in [23]. The
independence copula is selected if there is not enough
evidence against the null hypothesis of independence
at a �xed signi�cance level of 0.1. Otherwise, we es-
timate the parameters of a group of candidate copu-
las and choose the one that minimizes a Cramér-von

TABLA I: Test bed.

fSphere(x) =
∑n

i=1 x
2
i

fGriewank(x) = 1 +
∑n

i=1
x2
i

4000
−
∏n

i=1 cos
(

xi√
i

)
fAckley(x) = −20 exp

(
−0.2

√
1
n

∑n
i=1 x

2
)

− exp
(
1
n

∑n
i=1 cos (2πxi)

)
+20 + exp (1)

fSummationCancellation(x) =
1

10−5+
∑n

i=1 |yi|

where y1 = x1,

yi = yi−1 + xi

Docking of 2z5u test system, a 73-atoms molecule

with 20 ligand torsions in a box of size 28× 32× 24 Å.

Mises statistic [24].
The bivariate copulas that we consider are: normal,
Student's t, Clayton, rotated Clayton, Gumbel and
rotated Gumbel. The normal copula cannot account
for tail dependence, while the Student's t copula re-
stricts upper and lower tail dependence to be equal.
Clayton and rotated Clayton are only lower tail de-
pendence, while Gumbel and rotated Gumbel are
only upper tail dependence. The copula parameters
are estimated using the inversion of Kendall's tau
[25]. The degrees of freedom of the Student's t cop-
ula are estimated by maximum likelihood with the
correlation parameter �xed [26].
Simulation from vines [27], [28], [29] is based on the
conditional distribution method [30]. The general
algorithm for sampling n dependent uniform [0,1]
variables is common for the C- and D-vines. First
we sample n independent uniform random numbers
wi ∈ (0, 1) and then we compute

x1 = w1

x2 = F−12|1 (w2|x1)

x3 = F−13|1,2(w3|x1, x2)

· · ·
xn = F−1n|1,2,...,n−1(wn|x1, . . . , xn−1)

To determine F (xj | x1, x2, . . . , xj−1) for each j, the
expressions (5) and (6) are used for both structures.
However, choice of the vj in (5) is di�erent for the
C- and D-vines. For details about the implementa-
tion of the vine sampling algorithms, the reader is
referred to [6]

IV. Experiments

All above-said about the algorithms and more is
implemented in the packages copulaedas [31] and
vines [32] of the statistical environment R [33].
A main goal of the reported experiments is to test

whether VEDAs deal appropiately with both weak
and strong correlated problems. This is the expected



behaviour due the vine ability to deal with di�er-
ent patterns of dependence. We compare the perfor-
mance of our vine-algorithms with that of UMDA
and GCEDA. Recall the later have the same type
of dependence across all pairs of variables. In this
paper, all copula-based EDAs deal only with normal
margins.

Here we only present results for a few small (n =
10) arti�cial tests functions and one slightly larger
(n = 26) real-world problem: protein docking. For
more details and reports of extensive simulations the
reader is referred to [18], [20], [34].

A. Test Functions

Four well-known test functions are considered as
benchmark problems: Sphere, Griewank, Ackley and
Summation Cancellation [35]. The de�nition of each
function for a vector x = (x1, . . . , xn) is given in Ta-
ble I. Sphere, Griewank and Ackley are minimiza-
tion problems with global optimum equal to zero at
x = (0, . . . , 0). Summation Cancellation is a maxi-
mization problem which has its global optimum at
x = (0, . . . , 0) with evaluation 105.

We �nd the population size required by each algo-
rithm to reach the global optimum of the function in
30 of 30 independent runs (critical population size).
The critical population size is determined using a bi-
section method [36]. The algorithms stop when the
global optimum is found with a precision of 10−6

or after 500000 function evaluations. All the algo-
rithms use a truncation selection of 0.3 [37], and no
elitism. The initial population is sampled uniformly
in the real interval of each variable. As interval we
use [−600, 600] in Sphere and Griewank, [−30, 30] in
Ackley and [−0.16, 0.16] in Summation Cancellation.

B. Molecular Docking

Molecular docking is a computational procedure
to predict the geometry of binding of two molecules.
Often, one of these molecules is a protein, while the
second one, the ligand, is a small molecule that binds
into the protein. The protein-ligand docking prob-
lem remains open, since the algorithms for exploring
the conformational space and the scoring functions
that have been implemented so far, still have signif-
icant limitations [38].

Here we present results for the 2z5u protein-
ligand test system, which is available from the
Protein Data Bank (PDB) [39] The codi�cation
of the individuals contains information about the
position (three variables), orientation (three vari-
ables), and torsion angles (20 variables) of the lig-
and. Hence this is a 26-dimensional problem. We
use the semiempirical scoring function implemented
in Autodock 4.2 [40].

To evaluate the quality of the predicted ligand
conformations, we use the root-mean-square devia-
tion (RMSD) between the crystallographic and pre-

dicted ligand coordinates of the atoms. A structure
with an RMSD within 2Å is classi�ed as successfully
docked, while a structure with an RMSD between 2
and 3Å is classi�ed as partially docked.

We �rst �nd for each algorithm the population
size that yields the lowest energy with the smallest
number of evaluations, which ensures a comparison
between the algorithms as fair as possible.

For the VEDAs, only the bivariate product and
normal copulas are �tted. Besides, the truncation
procedure is applied to reduce the number of trees
in the vines.

For GA [41] we use a two-point crossover rate of
0.8, a mutation based on Cauchy distribution with
parameters α = 0 and β = 1, a mutation rate of 0.2,
an elitism value of one, and proportional selection.
For PSO (Standard PSO 2007 [42]) we use an in-
ertia weight of 1/2log(2), the user de�ned parameters
are φ1 = φ2 = 5log (2), and the number of neigh-
borhoods is 1 − (1− 1/s) where s is the number of
particles (swarm size). For DE (variant: DE/local-
to-best/1/bin) we use a crossover rate of 0.8, a dif-
ferential mutation rate of 0.5, and a mutation scale
factor of 0.8.

C. Results

The experimental results obtained with UMDA,
GCEDA, CVEDA and DVEDA in Sphere, Griewank,
Ackley and Summation Cancellation are presented
in Tables II, III, IV and V, respectively.

With the �rst three functions, all algorithms ob-
tain the same �nal error. However, UMDA has
a smaller critical population size and does the job
with much fewer function's evaluations than its com-
petitors. The vines algorithms behave similarly but
clearly better than GCEDA. CVEDA seems to be a
slightly more e�cient than DVEDA.

In Summation Cancellation, CVEDA behaves
much better than DVEDA, however GCEDA shows
excellent results and signi�cantly outperforms both
VEDAs. UMDA can not optimize this function,

The experimental results with copula-based
EDAs, PSO, DE and GA in the docking example
is showed in Table VI.

The tested implementations of PSO, DE and GA
do a very poor job. Despite the huge number of
function evaluations they end way far from the re-
sults of the copula algorithms, both in terms of
achieved energy and RMSD. We recall that RMSD
values greater than 3Å are not considered success-
fully docked.

DVEDA achieves the lowest energy with the small-
est number of evaluations. GCEDA follows it with
respect to evaluations and also has the best RMSD.
CVEDA improves the energy obtained by GCEDA,
but needs about 15000 more evaluations and gets a
worse RMSD.

Aiming to analyze how the number of bivari-
ate normal copulas �tted to the arcs varies during



TABLA II: Results in Sphere with xi ∈ [−600, 600], i = 1, . . . , 10.

Algorithm Success Population Evaluations Best Evaluation

UMDA 30/30 86 3996.1± 89.5 6.9E− 07± 1.9E− 07

GCEDA 30/30 325 13769.1± 248.5 6.6E− 07± 1.6E− 07

CVEDA 30/30 188 8033.8± 170.5 6.8E− 07± 2.1E− 07

DVEDA 30/30 207 8818.2± 192.9 7.0E− 07± 1.8E− 07

TABLA III: Results in Griewank with xi ∈ [−600, 600], i = 1, . . . , 10.

Algorithm Success Population Evaluations Best Evaluation

UMDA 30/30 113 5179.1± 210.0 7.2E− 07± 1.7E− 07

GCEDA 30/30 304 12798.4± 351.1 6.6E− 07± 1.7E− 07

CVEDA 30/30 213 9151.9± 452.6 6.5E− 07± 1.8E− 07

DVEDA 30/30 225 9630.0± 309.2 6.9E− 07± 1.5E− 07

TABLA IV: Results in Ackley with xi ∈ [−30, 30], i = 1, . . . , 10.

Algorithm Success Population Evaluations Best Evaluation

UMDA 30/30 88 5426.6± 127.2 8.2E− 07± 1.0E− 07

GCEDA 30/30 325 18178.3± 207.8 8.0E− 07± 1.5E− 07

CVEDA 30/30 213 11984.8± 184.9 7.9E− 07± 1.5E− 07

DVEDA 30/30 213 11920.9± 197.6 7.9E− 07± 1.3E− 07

TABLA V: Results in Summation Cancellation with xi ∈ [−0.16, 0.16], i = 1, . . . , 10.

Algorithm Success Population Evaluations Best Evaluation

UMDA 0/30 2000 500000.0± 0.0 6.9E+ 02± 5.0E+ 02

GCEDA 30/30 325 38848.3± 327.6 1.0E+ 05± 1.2E− 07

CVEDA 30/30 625 84958.3± 786.0 1.0E+ 05± 1.1E− 07

DVEDA 30/30 1400 161840.0± 1352.5 1.0E+ 05± 9.3E− 08

the evolution, we compare CVEDA and DVEDA in
terms of the relative proportion between the num-
ber of bivariate normal copulas that have been �tted
and the total number of edges in the vine. We recall
that in the docking example, only the product and
normal copulas are �tted. Figure 2 shows that the
number of normal copulas �tted by both algorithms
increases during the evolution, although DVEDA �ts
more normal copulas than CVEDA.

It is worth noting that because of the use of a
truncation procedure, the number of statistical tests
was dramatically reduced. The average number of
�tted trees was below eight with CVEDA and below
ten with DVEDA.

D. Discussion

We assess the impact of using di�erent types of de-
pendencies and bivariate copulas. The main results
are summarized as follow:

1. CVEDA and DVEDA exhibit a good performance
in problems with both strong and weak dependen-
cies: While UMDA uses the independence model

and GCEDA assumes a linear dependence structure,
CVEDA and DVEDA do not assume the same type
of dependence across all pairs of variables. The es-
timation procedures used by the vine-based algo-
rithms select among a group of candidate bivariate
copulas, the one that �ts the data appropriately.
Thanks to this mechanism, CVEDA and DVEDA
perform, in general, between UMDA and GCEDA
in terms of the number of function evaluations.
2. CVEDA exhibits better results than DVEDA in
the easy problems for UMDA (Sphere, Griewank
and Ackley): The model used by DVEDA allows
a more freely selection of the bivariate dependences
that will be explicitly modeled, while the model used
by CVEDA has a more restrictive structure. These
characteristics enable DVEDA to �t in the �rst tree
a greater number of bivariate copulas that represent
dependencies. This may explain why DVEDA re-
quires larger sample sizes than CVEDA, and thus
more function evaluations.
3. CVEDA has much better results than DVEDA
in Summation Cancellation: Summation Cancella-
tion reaches its global optimum when the sum in



TABLA VI: Comparison of copula-based algorithms with PSO, DE and GA in the 2z5u test system.

Algorithm Population Evaluations Lowest Energy RMSD

CVEDA 1400 157600± 11391 −29.58± 1.23 0.58± 0.12

DVEDA 1200 125266± 11965 −30.16± 1.28 0.52± 0.12

GCEDA 1600 140966± 17835 −29.43± 0.56 0.51± 0.05

UMDA 1400 171900± 11442 −29.14± 1.97 0.61± 0.18

PSO 300 912510± 95512 +42.52± 27.39 6.40± 2.95

DE 100 972536± 47549 +9.79± 21.48 7.49± 4.19

GA 20 2265600± 273062 +483.50± 538.39 13.34± 4.21

Fig. 2: Comparison of CVEDA and DVEDA for the
2z5u test system, in terms of the relative proportion
between the number of �tted normal copulas and the
number of arcs in the vine, at di�erent generations.
In a 26-dimensional vine, there are 25 trees and 325
arcs.

the denominator of the fraction is zero. The i-th
term of this sum is the result of the sum of the �rst
i variables of the function. Therefore, the values
of the �rst variables have a greater in�uence in the
value of the sum. The selected populations re�ect
these characteristics including stronger associations
between the �rst variables and the next ones. A C-
vine structure provides a more appropriate modeling
of this situation than a D-vine structure, since it is
possible to �nd a variable that governs the interac-
tions in the sample. However, as it was pointed out
before, here the interesting issue is the success of
GCEDA. The explanation is simple. On one hand,
Summation Cancellation has multivariate linear in-
teractions between the variables [4]. On the other
hand, the multivariate normal distribution is indeed,
a linear model of interactions.
4. Finally, a few words about the docking example.
Following the same line of reasoning of the above
paragraph and looking at Table VI, we could con-
clude that this problem has a certain amount of lin-
ear interactions, which explains the di�erence be-
tween UMDA and GCEDA. However, VEDAs have
better behavior, since their ability to deal with dif-
ferent patterns of dependence by combining di�erent

copulas (in this case, the product and normal copu-
las). The di�erences between CVEDA and DVEDA
can be explained by the di�erences of their struc-
tures: More �exible regular vines could do a bet-
ter job. Indeed, although the construction proce-
dure of the C-vine intends to represent explicitly the
strongest correlations in the �rst tree, the constraint
that only one variable can be connected to all the
others may prevent some strong correlations to be
included. As has been emphasized in [6], D-vines al-
low a more �exible selection of the dependencies to
be explicitly modeled, while C-vines might be more
appropriate in cases where one of the variables gov-
erns the interactions.

V. Conclusions

In this paper we have investigated four copula-
based EDAs: UMDA, GCEDA, CVEDA and
DVEDA. We have found that the vine-based EDAs
are in general more �exible, e�cient and robust than
the other two, which can be explained by their ability
to describe a wider variety of dependence patterns.
However, we also have found examples where UMDA
and GCEDA outperform the investigated VEDAs.
This, once again, points out to the importance of
model selection in the context of EDAs. The results
also suggest that the use of vines in EDAs open new
opportunities to more appropriate modeling of the
search distributions.
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