
Detection of BAX Translocation by means of

supervised learning: User manual

Luis de la Ossa

April 9, 2014

This set of Matlab scripts implement the method described in “Automatic
quantification of the subcellular localization of chimeric GFP protein supported
by a two-level Naive Bayes classifier”, by Sara Sáez-Atienzar et. al. This soft-
ware aims at detecting and counting BAX translocation in microscopic images
by means of supervised learning.

From the point of view of the user, there are 2 scripts which implement
the functionalities described: trainAndClassify and loadModelAndClassify.
Furthermore, there is another script aimed at testing the performance of the
proposed technique, namely testModel. Next, all of them are explained in de-
tail.

trainAndClassify.m

This is the script which implements the main program. Basically, it takes
a set of images and uses them to train the model with the intervention of the
user. Afterwards, it processes the remaining images, classifying and quantifying
the cells.

By default, the images used to train the model must be located in a folder
named training. The more images contain this folder, the better estimation of
the models. When the script is run, it asks for the class of every object detected,
as shown in Figure 1.

Once all the training images have been processed, the information is used
to estimate the two Naive-Bayes classifiers, which are then stored in a folder
named models. It is important pointing out that the name of the files must be
changed so that they are not replaced in subsequent usages.

After learning the model, the software automatically processes the remain-
ing images. All of them must be stored in the folder named new. Besides the
statistics, the sofware shows, for each image, the result (Figure 2). When the
number of new images is huge, this can be avoided by commenting or deleting
the last line of the script.

1

Figure 1: Screenshots of the software corresponding to the training phase. The
object being processed is surrounded by a white rectangle, and the expert must
provide its class.

Figure 2: Screenshots of the software corresponding to the results: Objects
enclosed by a white rectangle are discarded; Cells surrounded by a red rectangle
show a diffuse aggregation of protein; cells surrounded by a blue rectangle show
a translocated aggregation of protein.

2

loadModelAndClassify.m

This script also allows processing new images. However, instead of training
the classifiers, they are loaded from two files:

• models/objClassifier.mat, which contains the Naive Bayes model used
to classify the objects between discarded and transfected cells.

• models/cellClassifier.mat, which contains the Naive Bayes model used
to distinguish the types of transfected cells.

The output of this process is the same shown in Figure 2. Again, by default
it shows the resulting images. However, this can be avoided by deleting the last
line of the script.

testModel.m

This script allows evaluating the models. First of all, it takes all images in
folder training, and uses them to train the model with the intervention of the
user, which must label each object, as described in Figure 1. Once all training
images have been processed, models are estimated from the training dataset.

In the second step, the user must label the images contained in folder test

in the same way.
Last, the model makes the predictions for the images in folder test, and

compares them with those introduced by the user. The software shows two
confusion matrices (Figure 3), one for each model. Moreover, it shows results
on accuracy, precision and recall of each model.

3

*** Discarded objects vs Transfected Cells

Discarded Transfected <-- Classified as

9 0 Discarded: 9

1 21 Transfected: 22

--

Total: 31

Accuracy: 96.77 %

Precision: 1.00

Recall: 0.95

*** Diffuse vs Translocated Cells

Discarded Diffuse Translocated <-- Classified as

0 0 0 Discarded: 0

0 17 0 Diffuse: 17

0 0 4 Translocated: 4

Total: 21

Accuracy: 100.00 %

Precision (Translocated): 1.00

Recall (Translocated): 1.00

Figure 3: Results displaied by the script testModel.m

4

