
A bin packing reformulation and matheuristics
for the unrelated parallel machines scheduling

problem with resources

Rubén Ruiz1, Luis Fanjul1, and Federico Perea1

Grupo de Sistemas de Optimización Aplicada, Instituto Tecnológico de Informática,
Ciudad Politécnica de la Innovación, Edifico 8G, Acc. B.

Universitat Politècnica de València, Camino de Vera s/n, 46021, València, Spain.
rruiz@eio.upv.es, lfpeyro@gmail.com, perea@eio.upv.es

Abstract. This short paper studies a parallel machines scheduling prob-
lem with the consideration of resources. Each job needs a number of
resources at each machine for its completion. The objective studied is the
minimization of the makespan. We model this problem by means of two
integer linear programming problems. One of them is based on a model
previously proposed in the literature, whereas the other exploits the
resemblance of our problem with the well-known strip packing problems.
Since none of these models is capable of solving to optimality medium-
sized instances, we propose three matheuristic strategies. All algorithms
proposed are run over randomly generated instances of small-medium size.
Results show that matheuristics outperform the mathematical models by
a large margin that widens with instance size.

Keywords: scheduling, unrelated parallel machines, bin packing, addi-
tional resources, matheuristics, makespan

1 Introduction and motivation

Production tasks are largely carried out by machines. Therefore, the need for
intelligent organization becomes a must. In this paper we study a generalization
of the classical unrelated parallel machines scheduling problem (UPM) in which
we have to process a number of jobs in a number of parallel machines that are
available in the production shop. The most common objective in this problem is
to find an assignment of jobs to machines, so that the latest job being processed
finishes as soon as possible, the minimization of the so-called makespan. Machines
can process jobs simultaneously in parallel, and processing times need not be the
same for all unrelated machines. The UPM arises in production systems in which
two or more tasks need to be processed. [8] is one the first papers dealing with
this topic. Ever since then, the interest of the scientific community on the UPM
has not stopped increasing. Most of the treated scheduling problems on parallel
machines do not consider that the machines need an extra resource for their
functioning. Such extra resource could be, for example, the human operators



1184 Rubén Ruiz et al.

needed to manipulate machines. In this paper we assume that a fixed number of
operators are needed to process jobs in machines. More specifically, machines need
a discrete amount of a scarce renewable resource to process jobs. This amount
depends both on the job and on the machine, so as to make the problem more
realistic. We refer to the resulting problem as the Unspecified Dynamic Unrelated
Parallel Machine Scheduling problem with additional Resources (UPMR). The
UPMR problem takes the following input data: 1) A list of m available machines,
indexed by i and i′. 2) A list of n jobs to be processed, indexed by j and j′. 3)
Rmax units of a certain resource. 4) pij ∈ Z+ units of time and rij ∈ Z+ units of
the resource, are needed to process job j at machine i, ∀ i = 1, ..., m, j = 1, ..., n.
The additional constraint to satisfy is that no more than Rmax units of the
resource can be used at any time. The aim is to assign jobs to machines and to
decide when they will be processed, so that the maximum completion time of the
job is minimized. This objective is commonly referred to as makespan or Cmax.
The following example illustrates our problem (UPMR) and the differences with
respect to the unrelated parallel machine scheduling problem (UPM).

Example 1. Consider the following instance of an UPMR with two machines
(m = 2), five jobs (n = 5), five units of a scarce resource (Rmax = 5) and the
following processing times and resource needs:

P =
(

1 2 2 2 1
2 1 2 3 1

)
; R =

(
4 3 3 4 2
2 5 4 2 5

)
,

where P and R are the n×m matrices whose entries are the processing times pij

and resource needs rij of the assignment machine i and job j, respectively. The
unrelated parallel machine scheduling problem would have as optimal makespan
Cmax = 4. The optimal solution is shown in Figure 1a, top graph. As we can
see in the bottom graph, the maximum availability of resources is violated by
four, between time 0 and time 1, and by three units between time 1 and time
3. Constructing a resource-feasible solution from the optimum solution without
resources, keeping the jobs assigned to the same machines, results in the solution
of Figure 1b. Resources are not overused now, but the makespan has increased to
seven units and both machines incur in idle-times. If we calculate the optimum
solution considering resources for the same problem we obtain the solution given
in Figure 1c.

7654321

Machine 
1

Machine 
2

1

3 5

4

2

7654321

1

3
2

9
8
7

4
5
6

Rmax

(a) Opt. sol.

7654321

Machine 
1

Machine 
2

1

3 5

4

2

7654321

1

3
2

9
8
7

4
5
6

Rmax

(b) Sol. with resources.

7654321

Machine 
1

Machine 
2

1

3 5

4

2

7654321

1

3
2

9
8
7

4
5
6

Rmax

(c) Opt. sol. with resources.
Fig. 1: Optimum solution for the example in different scenarios.



Actas de la XVI Conferencia CAEPIA, Albacete Nov 2015 1185

As can be observed, resources are better used, machines are now always busy,
and the makespan has only increased one unit with respect to the resource-
unconstrained solution, Cmax = 5. This new solution is, however, completely
different than the solution without resources.

Note that the regular parallel machines problem is just an assignment problem,
and the only decision to be made is to which machine each job must be assigned
to. Assigned jobs are processed in any order and the machines are never idle in
between jobs. The version with resources is much more complex as the assignment,
the sequence of the assigned jobs at each machine, and also the starting and
completion times, must be determined. Besides, at times machines might be
unable to process the next job due to resource shortage and idle times might
appear.

Although not as old as the version without additional resources, the UPMR
(or close variations of it) has been studied in the literature for the last three
decades. Back in the eighties, [1] study a UPMR problem in which all machines
are identical, and therefore requirements of additional resources and processing
times only depends on the job. There are some papers about the static version of
the problem, which assumes that the allocation of resources to machines is given
and fixed during the whole time horizon. [2] study another simplified version
of the UPMR, in which the number of resources needed to process a job does
not depend on the machine in which the job is to be processed. [4] propose
some models for the UPMR problem with machine eligibility constraints (not all
jobs can be processed in all machines). These models are later applied to a real
instance by the same authors in [5].

The rest of the paper is structured as follows: Section 2 introduces two different
mixed integer linear programming (MILP) models, which are later on used as
a base for several matheuristic strategies in Section 3. All these algorithms are
computationally tested in Section 4. The paper closes with some conclusions and
pointers to future research.

2 MILP modelling

Two different MILP formulations are proposed. The first one is based on a
model previously introduced in the literature. The second one models the UPMR
problem as a special bin packing problem.

2.1 A MILP based on previous research

In this section we adapt the MILP program introduced by [3] to the UPMR
studied in this paper. The model assumes that the number of resources assigned
affects the processing times. This is different from our problem, which assumes
that a fixed amount of resources is needed for processing jobs in machines, and
this number may not be changed. Besides index i for machines and index j for
jobs, we need index k to denote the time. As opposed to i and j, which are clearly



1186 Rubén Ruiz et al.

bounded by m and n, respectively, the maximum time at which a job can be
processed, denoted by Kmax, is not trivial. Further discussions about Kmax are
given in the experiments section.

The first MILP program for the UPMR (denoted by UPMR-S) uses the
following variables:xijk = 1 if job j is assigned to machine i and completes its
processing at time k, and zero otherwise and Cmax is the makespan. Note that
the xijk variable only exists for k ≥ pij . Model UPMR-S consists of minimizing
Cmax, subject to the following constraints:∑

k,i

kxijk ≤ Cmax, ∀ j (1)

∑
i,k:k≥pij

xijk = 1, ∀ j (2)

∑
j,s:s∈{k,...,k+pij−1}

xijs ≤ 1,∀ i, k ≥ pij (3)

∑
j,i,s:s∈{k,...,k+pij−1}

rijxijs ≤ Rmax,∀ k ≥ pij (4)

Constraints (1) determine the makespan. Constraints (2) impose that each job
is assigned to exactly one machine, and finishes at exactly one time. Constraints
(3) ensure that the same machine does not process more than one job at any
time. Constraints (4) impose that no more than Rmax units of resource are used
at any time.

2.2 A bin packing problem based model

We use the ideas obtained from bin-packing formulations to model our UPMR
as a linear programming program. In 2D bin-packing problems, the objective
is to place a set of rectangular items into a rectangular case. When one of the
dimensions of the case is fixed, the problem is known as a strip packing problem
where the objective is to place a set of rectangles into the case so that the length
of the other dimension is minimized. We will consider that the height of the case
(denoted by H, which will denote the resources) is fixed, and the width (denoted
by W , which will denote the makespan) is to be minimized, so that all items fit
in the case.

The resemblance between this problem and the specified version of the UMPR,
in which the assignment of jobs to machines is fixed a priori, can be stated as
follows. In the strip-packing problem, the n rectangles to be placed in the strip
have width wk and height hk, for k = 1, ..., n. For the sake of notation, and
without loss of generality, we will denote the items as ij (since they correspond
to machine-job assignments) instead of k. If we consider each rectangle to be a
job-machine assignment (previously fixed), we have that the width and height of
ij is wij = pij , and its height is hij = rij . In strip-packing problems, the objective
is to find the location of each rectangle, whose top-right corner coordinates can be
denoted by variables xk and yk (the x-axis will represent time and the y-axis will



Actas de la XVI Conferencia CAEPIA, Albacete Nov 2015 1187

represent the resources). In UPMR, these variables will be xij and yij . Therefore,
the height of the case H represents the maximum allowed units of resource Rmax,
and its width W represents the makespan Cmax, to be minimized. Note that
this is a very specific strip-packing problem for which no specific notation, like
that provided in [9] is valid. The specified UPMR problem can be modeled as a
strip-packing problem as follows:

minimize Cmax (5)

pij ≤ xij ≤ Cmax; rij ≤ yij ≤ Rmax; ∀ j (6)

xij − xi′j′ ≥ pij or xi′j′ − xij ≥ pi′j′

or yij − yi′j′ ≥ rij or yi′j′ − yij ≥ ri′j′
∀ j, j′ > j + 1 (7)

Equation (5) is the objective: the minimization of the free dimension of the
strip (which corresponds to the makespan). Constraints (6) set the bounds for
xij and yij . Constraints (7) prevent the overlap of any two rectangles, by forcing
the difference between each pair of rectangles to be larger than or equal to the
width (horizontal axis) or height (vertical axis), of the rectangle located more to
the right and higher, respectively. Besides, we also need to impose to this model
that, when jobs are assigned to the same machine (i = i′), there should be no
overlap between the rectangles associated to these jobs in the horizontal axis,
because the same machine cannot process more than one job at the same time.
In the UPMR problem jobs are not pre-assigned to any machine and we need to
define a set of m rectangles for each job: one for each machine. Because jobs are
processed in one machine, for each job we must select only one rectangle out of
this set, and schedule them in order to minimize the Cmax. For this purpose, we
need to make xij = yij = 0 in case job j is not assigned to machine i, and the
overlap-constraints (7) only need to be applied to pairs of rectangles that have
been selected out of its respective set. Therefore, for the UPMR problem model
based on bin-packing, denoted by UPMR-P, we need the binary variable sij . This
variable takes value 1 when job j is assigned to machine i, and zero otherwise.
The generic UPMR-P model consists of minimizing the makespan subject to:

m∑
i=1

sij = 1 ∀ j (8)

if sij = 1⇒ pij ≤ xij ≤ Cmax; rij ≤ yij ≤ Rmax;
if sij = 0⇒ xij = yij = 0;

∀ i, j (9)

∀ i, j, i′, j′ ≥ j + 1 such that sij = 1 and si′j′ = 1⇒
xij − xi′j′ ≥ pij or xi′j′ − xij ≥ pi′j′

or yij − yi′j′ ≥ rij or yi′j′ − yij ≥ ri′j′ (vertical axis only if i 6= i′)
(10)



1188 Rubén Ruiz et al.

Constraints (8) impose that each job j is processed by one machine. Con-
straints (9) impose the bounds for xij and yij , and fix these variables to zero
if job j is not assigned to machine i. Constraints (10) prevent the overlap of
rectangles ij and i′j′, and are only imposed if both rectangles are selected. They
also impose that, in case i = i′ (same machine), there should be no overlap in
the horizontal axis.

Our next step is to write the previous model as an integer linear programming
model. For this aim, we need to write the bound constraints (9) and the overlap
constraints (10) as linear constraints. Out of several possibilities tested, the one
that showed the best performance is now described.

min Cmax + 1
M

n∑
j=1

m∑
i=1

xij (11)

s.t.:
m∑

i=1
sij = 1 ∀ j, (12)

sijpij ≤ xij ≤ Cmax, sijrij ≤ yij ≤ Rmaxsij ∀ i, j, (13)

Muiji′j′ + xij − xi′j′ ≥ pij , Mui′j′ij + xi′j′ − xij ≥ pi′j′ (14)

ui′j′ij + uiji′j′ ≤ 1 + (1− sij) + (1− si′j′), (if i′ = i) (15)

Mviji′j′ + yij − yi′j′ ≥ rij , Mvi′j′ij + yi′j′ − yij ≥ ri′j′ , (if i′ 6= i) (16)

uiji′j′ + ui′j′ij + viji′j′ + vi′j′ij ≤ 3 + (1− sij) + (1− si′j′)+
(1− sij) + (1− si′j′), (if i′ 6= i)

(17)

Where the binary variables u and v are used to determine which of the no-overlap
constraints are activated. Constraints (14), (15), (16) and (17) being defined for
all i, j, i′, j′ ≥ j + 1.

The objective function (11) minimizes Cmax and forces xij to zero whenever
this is possible (if job j is not assigned to machine i). (12) make that each job j is
assigned only to one machine. Constraints (13) set the bounds for the horizontal
and vertical axis, setting this bound for the vertical axes to zero if sij is zero.
Constraints (14) and (16) are the no overlap constraints, which are imposed for
all pairs in the horizontal axis, and only for pairs that do not share the same
machine in the vertical axis (i 6= i′). Constraints (15) and (17) are the boundary
equations for the no overlap restrictions. The first set applies to pairs sharing the
same machine, and the second set applies to pairs not sharing the same machine.
Notice that these constraints are relaxed when sij or si′j′ are zero.

3 Matheuristic strategies

Matheuristics are algorithms in which metaheuristics techniques are combined
with mathematical programming models. Although a relatively new concept, it
is gaining more and more attention in the last years. We briefly describe three



Actas de la XVI Conferencia CAEPIA, Albacete Nov 2015 1189

heuristic strategies based on the MILP models introduced in Section 2. The first
one is based on exploiting the specified version of the problem, in which the
job to machine assignment is fixed in a first step as the solution to the relaxed
UPM problem, to then solve the UPMR having such assignment fixed. We used
this strategy because both the UPM and specified UPMR problem are much
faster to solve than the unspecified UPMR. The second one reduces the set of
potential job-machine assignments, by discarding, for each job, those machines
that yield the largest processing times. This strategy was chosen because of the
good results it yielded in the UPM, see [7]. The third one is a greedy strategy,
in which the problem is sequentially solved for smaller subsets of jobs, keeping
fixed the assignments found in previous iterations. This strategy was chosen both
for its simplicity and for the extensive use, many times successful, that greedy
algorithms and its variants have had in the literature.

3.1 Machine-assignment fixing

This algorithm firstly solves the regular unrelated parallel machines problem
minimizing the makespan (UPM problem without the resource constraints), which
can be done very rapidly in a solver as shown in [6]. As shown in the experiments
section, all instances tested can easily be solved to optimality if the resources are
ignored. The solution to this problem, referred to as x∗, gives an assignment of
jobs to machines, without specifying when jobs are processed. In a second phase,
the MILP program of the UPMR is relaxed in such a way that the variables that
assume any other job-assignment than the one obtained by UPM are fixed to
zero. This method is referred to as MAF .

3.2 Job-machine reduction

This algorithm aims at reducing the large amount of variables present in the
MILP models defined before. This is done in such a way that, for every job j, only
the “best” machines can be used. By best, we here mean those machines with the
shortest processing times for each job. The number of potential machines selected
for each job, here denoted as ` ∈ Z+, is a parameter of the model. For example,
for each job j we set variables to zero for all machines i such that the processing
time pij is not among the ` smallest in the list {pij , i = 1, ..., m}. Actually, these
variables are not even defined in the final model. This method is refereed to as
job-machine reduction (JMR).

3.3 Greedy-based fixing

This sequential algorithm, referred to as GBF , works as follows. At each iteration
a group of g ∈ Z+ jobs are selected, solving the UPMR problem for these jobs
only. Then, the UPMR problem for other g jobs is solved, taking into account
the solution obtained before. The process continues until all jobs have been
assigned to machines and have a scheduled start time. This strategy closely



1190 Rubén Ruiz et al.

resembles the K-greedy algorithms. Initial experiments quickly showed that it
was beneficial to consider previously scheduled jobs and to include them in
the next iteration. Therefore, GBF first solves the UPMR with g unscheduled
jobs. Then, at each subsequent iteration, the job scheduled last in the machine
generating the makespan and g−1 new unscheduled jobs are added to the problem
and the UPMR model is solved, considering that the previously scheduled g − 1
jobs are fixed for the rest of the algorithm. Therefore, there is one first iteration
with g unscheduled jobs. Then we have bn−g

g−1 c iterations, each one with one
previously scheduled job and g − 1 new unscheduled jobs. There might be a final
iteration with the

(
(n− g) mod (g − 1)

)
+ 1 final unscheduled jobs.

4 Computational and statistical evaluation

In order to generate the instances, several factors are considered. Apart from
number of jobs n and number of machines m, the magnitude and dispersion of
the processing times and the units available of the resource and the consumption
of these by the jobs are considered. The processing times are generated in five
different ways (see [6] for more details). We consider the following additional
factors for the instances: 1) The number of jobs n considered is 8, 12, 16, 20, 25
and 30. 8, 12 and 16 are considered small-size, whereas 20, 25 and 30 are deemed
as medium-size. 2) The number of machines m considered is 2, 4, and 6. 3) The
number of resources needed by each job at a given machine has been randomly
generated in two different ways: rij = U(1, 9) and by intervals, increasing with
the processing times. We divide the set of job-machine feasible assignments
into different groups, according to their processing times. We assign a number
of resources to every group, increasingly depending on the processing times.
Then the number of resources for each job-machine pair is computed as the
sum of the number assigned before and a U(−3, 3), truncated between 1 and
9, if necessary. As a result, if Umax and Umin are the theoretical maximum and
minimum processing times and if Rup and Rlo are the theoretical maximum
and minimum number of resources needed by a job-machine assignment, then
rij =

⌊
pij−Umin

d

⌋
+ Rlo + U(−3, 3), where d = Umax−Umin

Rup−Rlo+1 and bxc means we take
the integer part of x (rounded down). We replicate all possible combinations
of these four factors five times. Therefore, the total number of instances to be
tested is (5 × 6 × 3 × 2) × 5 = 900 (450 small, 450 medium). For the MILP
program UPMR-S, the maximum k allowed was set to a trivial upper bound
equal to the makespan value assuming only one machine is available, that is,
Kmax = mini

∑
j pij . Note that for the proposed matheuristics the values of the

Kmax were set accordingly.
The solver used has been IBM ILOG-CPLEX 12.6. All experiments have

been carried out in a computational cluster formed by 30 blade servers each with
two Intel XEON E5420 processors running at 2.5 GHz and 16 Gbytes of RAM
memory. Virtual machines of 1 processor and 2 GBytes of RAM are used. All
proposed algorithms are run in the aforementioned computers with a maximum
stopping time of 1 hour each. We test the two proposed mathematical models,



Actas de la XVI Conferencia CAEPIA, Albacete Nov 2015 1191

UPMR-S and UPMR-P, and the three matheuristic methods, each one tested with
the two MILP models. Therefore we test MAF -S, MAF -P, JMR-S, JMR-P,
GBF -S and GBF -P. In total we have two MILP models and 6 matheuristics.
All methods are tested over the 900 aforementioned instances, which results in
8× 900 = 7200 results. The total CPU time needed to do all the experiments was
3550 hours, or equivalently almost 148 days (if the experiments were performed
in a single computer).

The response variable is the relative percentage deviation (RPD) over a
calculated lower bound. The lower bound contains three components, the first one
is the optimum solution of the problem without resources, i.e., the UPM problem,
obtained by solving the simple and well known assignment problem shown, among
others, in [6]. All UPM models for the small and medium instances are quickly
solved with CPLEX in a few seconds. The other two components are taken from
the lower bounds given by the solver after solving the two proposed models with
resources, i.e., UPMR-S and UPMR-P. This response variable RPD for any of
the tested instances is therefore measured as: RPD = 100 · Methodsol−LB

LB where
Methodsol is the solution obtained by any of the tested models or matheuristic
methods for a given instance and LB is the three component lower bound.

The first important result after the experimentation is that not all models and
matheuristics are capable of obtaining feasible solutions in all cases, even for the
small instances of 12 jobs. In this scenario it is hard to compare methods when
not all of them have given solutions for all instances. Therefore, in the following
experiments we carry out two measurements, both based on the RPD. In the
first case we remove from the comparison all cases in which one or more methods
failed to give a solution, or where the solution had an absurdly high makespan
value (RPD1). In the second case we consider all instances, but substitute all
results in which there is no solution, or there is a bad solution, by the Kmax
value (RPD2). The Average Relative Percentage Deviation (RPD) calculated for
both measurements is given in Table 1. We are also showing the number of cases
at each row (Counts), the maximum RPD (Max RPD) and the average CPU
time in seconds (Av. Time).

For the small instances, in 20 of the 450 instances not all methods could
find a solution. Both mathematical models are very capable. For RPD2, UPMR-
S deviates almost a 30% from the lower bounds. The reformulation carried
out in the UPMR-P model is much better with maximum values of RPD2
being one order of magnitude lower than those of UPMR-S. As regards the
matheuristic methods, only JMR-P and GBF -P are competitive with UPMR-P.
The best CPU times correspond to GBF -P. This is a very interesting result as
we have a very fast method with good performance. For the medium instances
(n = {20, 25, 30}) we have that, for the RPD1 measurement, 100 out of 450
instances do not have solution for all methods. The most important result is that
the mathematical models, in particular UPMR-S, are no longer competitive and
the average deviations go up to more than 160% depending on the measurement.
UPMR-P is definitely much better than UPMR-S in all measurements while
using comparable CPU times. Most proposed matheuristics dominate UPMR-P,



1192 Rubén Ruiz et al.

Small instances
RPD1 RPD2

Method Count RPD Max RPD Av. Time Count RPD Max RPD Av. Time

UPMR-S 430 9.92 526.24 1573.84 450 29.53 628.31 1663.89
UPMR-P 430 3.21 39.18 2143.60 450 3.55 64.66 2208.34
MAF -S 430 14.16 99.27 867.95 450 14.47 247.88 889.33
MAF -P 430 11.10 89.77 489.17 450 10.95 89.77 523.65
JMR-S 430 7.86 299.62 1474.11 450 19.78 591.08 1565.17
JMR-P 430 3.35 39.18 1898.82 450 3.52 64.66 1969.92
GBF -S 430 4.32 44.83 677.81 450 4.49 65.03 752.63
GBF -P 430 3.63 39.18 442.44 450 3.76 64.91 496.45

Medium instances
RPD1 RPD2

Method Count RPD Max RPD Av. Time Count RPD Max RPD Av. Time

UPMR-S 350 112.14 1508.86 3432.40 450 160.11 1508.86 3469.67
UPMR-P 350 21.38 117.75 3600.48 450 22.17 129.74 3600.54
MAF -S 350 36.56 435.46 2234.24 450 65.54 486.15 2420.74
MAF -P 350 10.47 72.92 2752.26 450 10.24 72.92 2741.92
JMR-S 350 74.55 637.85 3428.37 450 138.36 640.83 3468.08
JMR-P 350 16.17 60.71 3598.75 450 15.84 67.21 3599.11
GBF -S 350 11.05 59.33 694.44 450 11.14 79.22 1072.00
GBF -P 350 9.06 58.55 953.55 450 8.82 58.55 1193.87

Table 1: Average Relative Percentage Deviation (RPD, two measurements) for
the tested methods. Time in seconds.

i.e., for example MAF -P gives average relative percentage deviations under both
measurements that are more than three times lower than those of UPMR-P while
using considerable less CPU times.

All results are checked for statistical significance with the ANOVA technique.
The complete results of the ANOVA are not given due to space considerations
(and are omitted for the small instances). Figure 2 shows the means plots for
the interaction between the proposed methods and the number of jobs n for
both measures in the medium instances. The intervals have the observed average
RPD in the center and are calculated according to Tukey’s Honest Significant
Difference (HSD) method. The intervals have a 95% confidence level. Overlapping
intervals between any two means imply statistical insignificance in the observed
differences. As we can see, most of the larger observed differences between any
two means are statistically significant, specially for the RPD2 measure. For the
medium instances, model UPMR-P is statistically better, and by a wide margin,
than model UPMR-S. Also, most matheuristics based on the UPMR-S model
also perform bad, with the exception of GBF -S.

5 Conclusions

We have shown how the formulation of the UPMR problem using a strip-packing
problem based model outperforms an adaptation of a model previously introduced
in the literature. However, and as expected because the UPMR problem has
previously been termed NP-hard, neither of these ILP models are able to cope with



Actas de la XVI Conferencia CAEPIA, Albacete Nov 2015 1193

-20

30

80

130

180

230

280

R
P

D
1

n
20
25
30

(a) RPD1 measure.

-20

60

140

220

300 n
20
25
30

R
P

D
2

(b) RPD2 measure.
Fig. 2: Interactions between the methods and n. All means with Tukey’s Honest
Significant Difference (HSD) 95% confidence intervals. Medium instances.

medium-sized instances. The matheuristic strategies proposed are competitive
with the ILP models in small instances, and clearly outperform them in medium-
sized instances. Besides, each of the three matheuristic algorithms obtained from
model UPMR-P is superior to their corresponding counterparts obtained from
model UPMR-S. The complexity of this problem, exponentially increasing with
the size of the instance, calls for the design of heuristics and metaheuristics,
which shall be addressed in further research.

References
1. Błażewicz, J., Kubiak, W., Röck, H., Szwarcfiter, J.: Minimizing mean flow-time with

parallel processors and resource constraints. Acta Informatica 24, 513–524 (1987)
2. Edis, E.B., Oguz, C.: Parallel Machine Sccheduling with Additional Resources: A

Lagrangian-Based Constraint Programming Approach. Lecture Notes in Computer
Science 6697, 92–98 (2011)

3. Edis, E.B., Oguz, C.: Parallel machine scheduling with flexible resources. Computers
and Industrial Engineering 63, 433–447 (2012)

4. Edis, E.B., Ozkarahan, I.: A combined integer/constraint programming approach to
a resource-constrained parallel machine scheduling problem with machine eligibility
restrictions. Engineering Optimization 43(2), 135–157 (2011)

5. Edis, E.B., Ozkarahan, I.: Solution approaches for a real-llife resource constrained par-
allel machine scheduling problem. International Journal of Advanced Manufacturing
Technology 9(12), 1141–1153 (2012)

6. Fanjul-Peyro, L., Ruiz, R.: Iterated greedy local search methods for unrelated parallel
machine scheduling. European Journal of Operational Research 207(1), 55–69 (2010)

7. Fanjul-Peyro, L., Ruiz, R.: Size-reduction heuristics for the unrelated parallel ma-
chines scheduling problem. Computers & Operations Research 38(1), 301–309 (2011)

8. McNaughton, R.: Scheduling with deadlines and loss functions. Management Science
6(1), 1–12 (1959)

9. Wäscher, G., Haußner, H., Schumann, H.: An improved typology of cutting and
packing problems. European Journal of Operational Research 183(3), 1109–1130
(2007)


	A bin packing reformulation and matheuristics for the unrelated parallel machines scheduling problem with resources

