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Abstract. In this paper, we address the slot planning phase, in which
the containers assigned to a container ship location have to be stowed,
satisfying many conditions related to the way in which containers have to
be stacked, the weight distribution and the specific conditions regulating
the containers with dangerous products.

In order to solve in an efficient way problems of realistic size, we have
developed a Greedy Randomized Adaptive Search Procedure (GRASP)
algorithm, including two constructive methods, several randomization
strategies, and several improvement moves. The algorithms have been
tested on a set of real-world instances. The results show that the algo-
rithm works quite well for a wide range of real instances.
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1 Introduction

Over the past two decades, the demand for cost efficient containerized trans-
portation has seen a continuous increase. In order to answer this demand, ship-
ping companies have deployed larger container vessels, that nowadays can trans-
port up to 18,000 containers. These vessels sail from port to port loading and
unloading thousands of containers. Minimizing the time a vessel stays at port
involves, among other aspects, an efficient stowage plan, a plan describing where
each container should be loaded in the vessel. A feasible stowage plan has to
satisfy many different constraints, high-level constraints ensuring that the vessel
is stable and seaworthy, and low-level constraints concerning the way in which
each container is loaded to a position into the vessel.

The state-of-the-art stowage planning follow a 2-phase hierarchical decom-
position of the problem [2,1]. In the first phase, called the Master Planning,
containers are distributed to subsections of the vessels called locations (a term
used in [2]). The distribution of containers must satisfy seaworthiness require-
ments: the center of gravity of the vessel must be within limits to ensure that e.g.
trim and draft are feasible, and that shear and bending moments are at within
tolerance. One of the main objectives of this phase is the minimization of the
hatch-overstowage, meaning the number of containers on-deck that need to be
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re-handled due to handling activities under-deck. Since this is not the focus of
this work, we refer the reader to [2] for a detailed description. The second phase
of the decomposition, Slot Planning, refines the container distribution and iden-
tifies the exact position of each container in the vessel locations. This phase is
concerned with the low-level constrains, regarding the physical position of the
containers, e.g. ensuring that weight and height capacities are satisfies, and that
reefers (refrigerated containers) are assigned to positions where a power outlet
is available.

In Figure 1, it is possible to see that Master Planing requires a loadlist, port
and wessel data. The loadlist includes the containers to load at the current port
and a forecast of the ones to be loaded at later ports. Vessel and port data include
information about e.g. the layout of the ship and the depth of the ports of call. If
the intended output is a class-based stowage plan (where only container types are
taken into account), it is possible to solve an independent Slot Planning Problem
for each location of the vessel (subsections of vessel). Though this might seem a
simplification of the problem, the reason for pursuing this road is rooted in the
container terminal part of the optimization. Given a class-based stowage plan,
terminals can optimize the load sequencing of the containers and thus further
reduce the ship’s time at port.

Slot Planning
Location Loc. Slot Slot Plan
1 Planning
Master Location™,  [Loe. Slot Slot Plan Stowage
Plan 2 [Planning 2 P]an
Location Loc. Slot Slot Plan
n Planning n

Fig. 1. The master planning and slot planning decomposition of stowage planning

Since solving the stowage planning problem over multiple ports requires the
use of forecasts, stowage planners wish to be able to analyze different forecast
scenarios. They thus require that the solution time does not exceed 10 min-
utes. According to [2,5] this requirement only leaves 1 second to solve each Slot
Planning Problem.

2 Background and Problem Definition

Container vessels are ships specially designed for the transportation of large
amounts of containers with a small crew. Containers are metallic boxes designed
to withstand significant outer forces. They are particularly robust to high vertical
compression, which allows the creation of high stacks. All containers are fitted
with corner castings designed to support the container’s weight, and to which
security fittings can be attached. ISO standard containers are usually 20’, 40’ or
45’ long. ISO containers are 8’ wide and 8.6’ tall with the exception of high-cube
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containers which are 1 foot taller. Longer containers, such as the 45 containers
are equipped with two extra sets of castings at a 40’ distance. The extra castings
allow the longer containers to be stacked on top of 40’ containers. No castings,
however, exist at the 20’ position, which means that 20’ containers cannot be
stacked on top of longer containers.

Aside from the standard and high-cube containers, there are a number of spe-
cialized containers for different kinds of cargo. Fruits and vegetables, for example,
must be transported in refrigerated containers called reefers. Containers trans-
porting dangerous goods are called IMO containers. Depending on the nature
of the cargo, a special IMO code is assigned to the container. Strict separation
rules apply to IMO containers.

The layout of a container vessel is shown in Figure 2. The figure shows how
containers are arranged into storage areas called bays, throughout the entire
vessel length. A bay is composed of a number of cells, each indicating a possible
stowage position. Cells usually have a capacity of two Twenty Equivalent Unitss
(TEUs), meaning that we can either stow two 20’ containers or one 40’ (or 45’)
container. Each TEU position within a cell is referred to as a slot. Slots toward
the bow of the vessel are called Fore slots and those towards the stern are called
Aftslots. Cells are identified by a stack number, indicating the horizontal position
within a bay, and a tier number indicating the vertical position. Figure 2 also
shows how only a subset of the cells have access to electric power (or reefer

plugs).
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Fig. 2. The layout of a container vessel.

2.1 Slot Planning

As previously mentioned, Slot Planning assumes that a solution to Master Plan-
ning is given. We are, thus, provided with a set of containers (or container types)
to be loaded into a single vessel location (subsection of the vessel). A represen-
tative Slot Planning problem was presented in [6,5]. We extend this definition
by including IMO restrictions and the maximization of the loaded cargo. Thus
a feasible solution must satisfy the following rules:

a) Assigned cells must form stacks (containers stand on top of each other in the
stacks. They cannot hang in the air).
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b) 20’ containers cannot be stacked on top of 40’ containers.

¢) A 20’ reefer container must be placed in a reefer slot. A 40’ reefer container
must be placed in a cell with at least one reefer slot.

d) The length constraint of a cell must be satisfied (some cells only hold 40’ or
20’ containers).

e) The sum of the heights and the sum of the weights of the containers stowed
in a stack must be within the stack limits.

f) All containers already onboard must be stowed in their original slots and they
cannot be moved to any other slots.

g) A cell must be either empty or with both slots occupied.

h) IMO rules must be satisfied.

IMO rules dictate how distant incompatible cargoes must be stowed (segre-
gation). Since in Slot Planning we only focus on a location, it is sufficient to
only concentrate on rules that allow stack segregation. Segregation that goes
beyond the stack level must be handled at the Master Planning level. Without
loss of generality, we have devised a representative set of rules based on 4 IMO
categories and a set of rules.

An optimal Slot Plan minimizes the sum of the following objectives:

a) Minimize the number of containers out of the solution. Sometimes is not
possible to stowage all the containers in the location. If F' and T are the sets
of 40’ and 20’ containers assigned to the location, respectively, a cost of 1000
- (|F| 4 |T|) units is paid for each container out of the solution.

b) Minimize overstows, the movements of containers to allow the unloading of
other container placed below. A 100 unit cost is paid for each container
overstowing any containers below.

¢) Avoid stacks where containers have many different discharge ports. A 20 unit
cost is paid for each discharge port included in a stack.

d) Keep stacks empty if possible. A 10 unit cost is paid for each stack used.

e) Avoid loading non-reefer containers into reefer slots. A 5 unit cost is paid for
each non-reefer container stowed in a reefer slot.

3 Literature review

A growing number of works on stowage planning have been published in the past
few years. The contributions can roughly be classified as belonging to multi-phase
or single-phase approaches. Multi-phase approaches ([2,1,3]) are currently the
best performing solutions, where the stowage planning problem is hierarchically
divided into sub-problems, often into master planning and slot planning. Single-
phase approaches consider the stowage planning problem as a whole. Since most
of those works only have a very simplified representation of ship stability, they
can also be seen as slot planning approached. Solution methods include mathe-
matical programming [4], constraint programming [12,6], constraint-based local
search [5], genetic algorithms [8], dedicated heuristics [9,11], 3D-packing [10].
Of those that are relevant for the Slot Planning Problem, in the works [9,12,8],
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all containers are considered to be of the same size and no distinction is made
between reefer and high-cube containers. Approaches that include both 20 and
40 foot containers are [10,4], of those [10] also includes high-cubes while [4] in-
cludes reefers. To the best of the authors’ knowledge, the only two works that
propose a industrial strength representative Slot Planning problem are [6,5].
Both works have comparable results, and complement each other. For instances
where the constraint programming approach in [6] cannot find an optimal solu-
tion, the constraint-based local search in [5] finds high-quality solutions. Both
approaches, however, disregard the positioning of IMO containers and assume
that the solutions of the Master Planning phase are feasible.

4 Constructive algorithm

In order to solve the slot planning problem of a location we are given the list
of containers assigned to this location by the solution of the master planning
problem as well as the list of containers already stowed in this location with
their positions.

We follow an iterative process in which we combine two elements: a list Cont
of the containers still to be stored, initially the complete list of containers, a list
S of stacks and, for each stack s € S, a list C of cells in which it is possible to
store a container.

At each step, we first choose a stack from S and the first tier available in
this stack. At this tier we have a cell Cy, which could contain two 20 containers
or a 40 container. Once we have chosen the tier, we choose the container to be
stored from among the containers in C'ont which could be feasibly stored in it.
The process goes on until all the containers have been stored or there is not any
usable space left.

Step 0: Initialization

We have the list Cont ordered by port, length, reefer, height and weight,
each factor in non-increasing order except the length: we want to store first 20’
containers and afterwards 40’ containers. Reefer and high cube containers are
before standard containers in the ordered list Cont because we want to consider
them first when choosing the container to store.

In the list S the partially filled stacks appear first and then the empty stacks.
Both lists are ordered by their number of available cells in non-increasing order.
This ordering tries to minimize the number of stacks being used.

Step 1: Choosing the stack and tier

We choose the first stack in the list S and its first empty tier. We do not
change the stack until it is full or we cannot store more containers in it.

Step 2: Choosing the container

Once a tier has been chosen, we have the characteristics of this tier, and
the conditions determined by the containers previously stored in the stack. For
instance, if we have in the previous tier a 40’ container, it is not possible to
store 20’ containers. Other aspects to be considered are the maximum weight



1178  Francisco Parreno et al.

and height left for the stack. Then we try to pack the first container on the list
satisfying the constraints.

We store a 40’ High Cube container when that does not reduce the number
of possible tiers of this stack if there are more standard containers of this port
to be stored.

If the cell has power supply we store a reefer container, if it is possible, in
this tier.

If we are going to store a 20’ container in this tier we check if it is possible
to store a second 20’ container in the other cell of this tier. We cannot leave odd
empty cells.

When the tier belongs to the upper half of the stack, we have the list Cont
ordered by port, length, reefer, height and weight, but in this case the weights
appear in non-decreasing order. We want to store in each stack heavyweight
containers in the lower half, and lightweight containers in the upper half. The
idea is to maintain a similar average weight in each stack.

Before we store a container we check if it is possible according to the IMO
constraints imposed on the stack by previously stored IMO containers.

Step 3: Updating the lists

We remove from the list the container already stored and update the values
of the total weight and height of the chosen stack. This process goes on until
there is no container on the list or there is no possible cells in which to store any
remaining container.

Parallel constructive algorithm

In the previous constructive algorithm, once a stack is open we store all the
containers that we can in this stack before considering a new stack on the list
S. We call this strategy a sequential construction. However, we have studied
an alternative in which instead of choosing a stack and fill it completely, we
take a different stack every time we store a container. We call this strategy a
parallel construction. This alternative is not good for minimizing the number of
stacks used because it keeps open all the available stacks, but it produces diverse
solutions and that would be useful in the iterative procedure described later.

5 GRASP algorithm

GRASP is an iterative procedure that combines a constructive phase and an
improving phase. In the constructive phase the solution is built step by step,
adding one element to a partial solution. For selecting the element to add, a
greedy strategy is used, but the selection is not deterministic because a ran-
dom strategy is used to provide diversity to the procedure. The improvement
phase consists of a local search. GRASP has been successfully applied to many
combinatorial optimization problems.
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5.1 Randomizing the constructive algorithm

We consider the constructive algorithm described in the previous section and
randomize Step 2, the order of the list of stacks, and Step 3, the list of containers
to be stowed.

In Step 2, we maintain two lists of stacks, first the open stacks, those which
are already partially filled, and then the empty stacks, but instead of having the
lists ordered by non-increasing number of available cells, we assign to each stack
a number taken at random from 0 to its number of available cells and order each
list according to these random numbers, using the same order previously defined
for cells.

In Step 3, we consider two ways of ordering the containers. The first one,
already described in the constructive algorithm, orders the containers by port,
length, reefer, height and weight. The other alternative orders them by port,
length, reefer, weight and height.

To randomize these orderings we have used two alternatives. The first one is
the introduction of a noise in the weight of the container, similarly to what we
did with the stacks, the new weight of each container is a random value between
0 and the original weight of the container, and the list of containers is reordered
with these new weights at each iteration. This method randomizes the choice of
container only at the level of weight or height, but the order of port, length and
reefer is kept fixed.

The second randomization method considers all the remaining containers,
ordered by non-increasing value, and takes a random sample. The size of this
sample is determined by a parameter ¢ that indicates the proportion of the
containers to be sampled, so each container has a probability § to be chosen.
We have a parameter § with 0 < § < 1, where delta = 1 is the deterministic
algorithm and 0=0 is completely random.

In order to introduce even more diversity in the solutions, we use two more
randomizing procedures. As we have developed two constructive methods, se-
quential and parallel, at each iteration we choose randomly one of them to build
the solution.

5.2 Determining the parameter §

We have used reactive GRASP, proposed by Prais and Ribeiro[7], in which ¢ is
taken at random from the set of discrete values {0.1,...,0.9}. As we have two
different methods (sequential and parallel) to build the solution, it is possible
that one value of delta can have good values for the sequential but bad values
for the parallel, so we keep two lists of values for d, one for the sequential case
and other for the parallel.

5.3 Improvement methods

The first improvement consists of removing the last containers stored by the
randomized algorithm and store them again with the deterministic algorithm.
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We have a parameter that determines how many containers to remove from the
solution. We choose a random percentage v € (35,95). We keep the first v% of
the containers and remove the others. To complete the solution we only use the
sequential constructive algorithm. This method is based on the fact that wrong
selections in the final stages of the randomized constructive process may produce
bad solutions and therefore significant improvements may be obtained by doing
the final part of that process again with the deterministic procedure.

The second movement consist of removing a set of stacks of the solution and
store them again with the deterministic algorithm. We select randomly a number
of stacks of the solution and remove the stacks stored in the last place.

6 Computational experiments

The algorithms were coded in C++ and run on a Intel Core Duo 2.93 GHz with
4 GB of RAM. For the GRASP algorithms we established a stopping criterion
of a maximum of 20000 iterations or 4000 iterations without improving the best
solution known.

We have two set of instances. The first set, Set I is that used by Delgado et
al. [6], composed of 236 slot planning instances derived from complete stowage
plans provided by a shipping company. Each instance has been generated by
restowing a random location in one of the stowage plans. Since the plans have
been applied in real life, we can assume that the containers have been assigned
to locations according to the preferences of stowage coordinators.

In the second set, Set II, there are 425 instances also generated from real slot
planning instances. Some of these instances have IMO containers and in general
they are more difficult because in some of them it is not possible to store all
the containers assigned to each location. There are in total 4 groups: Weight,
HC, Capacity and IMO. Each group is aimed at targeting a specific problem
property, e.g. in the weight group all instances are forced to have a total weight
of containers equal to a specified percentage of the total weight capacity.

Table 1 shows the average values (in thousands) of the objective function for
six versions of the constructive and GRASP algorithms described in previous
sections: the constructive parallel algorithm, the constructive sequential algo-
rithm, the randomized constructive algorithm using random noise (Noise), the
randomized constructive algorithm using random samples (Sample), the GRASP
algorithm (Randomized constructive + Improvements), the Reactive GRASP al-
gorithm (the value of parameter § is adjusted reactively) and the average time
in seconds for the reactive GRASP algorithm.

The last column shows the average time for the Reactive GRASP algorithm.

We can see that the sequential construction outperforms the parallel for all
types of problems. We can also see that the method based on random samples
works better than the version using random noise. The effect of the improvements
is quite considerable and the reactive technique provides better results than
the non-reactive version. The reactive algorithm, which is the most complex
procedure, requires just one second on average.
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Type # Parallel Sequential Noise Sample GRASP Reactive Time
Set I 236 659 320 99 104 24 24  0.63
Capacity 75 6988 3831 2315 1680 1533 1370 0.95
HC 125 9027 5212 1862 931 844 648  1.16
IMO 150 5695 3168 892 653 621 529 1.04
Weight 75 5279 3370 1623 1239 947 915 0.97
Overall 661 4627 2636 1037 693 590 510 0.90

Table 1. Results for constructive and GRASP algorithms

We can compare our results with the constraint programming from Delgado
et al. [6] because we are using the same instances and solving the same problem.
Table 2 compares the results of the GRASP algorithm running one and ten
seconds and the CP model by Delgado et al. [6] running also one and ten seconds
of CPU time. In order to have similar computational times we have modified the
stopping criterion, decreasing the number of iterations by 10. Then we have a
maximum of 2000 iterations or 400 iteration without improving the solution. The
table shows the values grouped by category. For each method, the first column
indicates the number of problems solved (%Sol), the second column the number
of problems solved optimally (%Opt), and the third the total time for all the
instances in the group (Time). We can see that our GRASP algorithm obtains
higher percentages of found solutions and similar results in the percentages of
optimal solutions.

Reactive Constraint Programming
1 sec 10 sec 1 sec 10 sec
Group #|%Sol %Opt  T|%Sol %Opt Time|%Sol %Opt T|%Sol %Opt T
1 13| 100 92 0,8/ 100 92 3,2 100 1000,1f 100 100 0,1
2 22| 100 100 4,2| 100 100 19,0, 91 91 3,6/ 91 91 21,6
3 13| 100 100 0,0 100 100 0,0 100 1000,5] 100 100 0,5
4 78| 100 97 6,8 100 100 28,4 96 95 6/ 99 99 19,7
5 36/ 100 100 6,5 100 100 28,1 92 89 7,1 92 92 39
6 15 100 100 0,7/ 100 100 2,7 100 93 1,2| 100 100 5.4
7 14| 100 79 3,5/ 100 79 15,1 64 57 6,8 64 64 53,5
8 14| 100 79 1,6/ 100 86 84| 93 93 1,5 93 93 10,5
9 170 94 71 43| 94 82 229| 76 76 5,2| 88 88 36,5
10 8| 100 63 0,8] 100 75 4,8/ 100 100 0,7] 100 100 0,7
11 6| 100 50 0,6] 100 50 4,71 83 83 1,3 83 83 10,3
Overall 99,6 93 31,6/ 99,6 94 145,6| 92 90 34| 94 94 198

Table 2. Comparing with Constraint Programming [6].
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7 Conclusions

We have developed a GRASP algorithm that obtains good results in short com-
puting times. When the problem is small, it seems to be more appropriate solving
it by using the integer formulation that works quite well, but when the problem
is larger and there are other constraints and characteristics the metaheuristic
scheme outperforms the results of the exact models.

In the future we plan to solve a more general slot planning problem in which
the solution of the master planning phase is not given as a set of specific con-
tainers assigned to a location, but as a number of containers of each port and
length assigned to each bay.
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