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Abstract. Semantic localization describes the surrounding of a robot by
using semantic labels. These labels are used to identify neighboring ob-
jects, but also the category of the place where the robot is located. Mul-
timodal human-robot interaction refers to the communication between
humans and robots by means of several information sources. This paper
presents a bibliographical revision about these two important robotic-
related topics: semantic localization and multimodal human-robot in-
teraction. In addition, this paper proposes a method for performing se-
mantic localization using information gathered from the interaction with
humans. This method models a lifelong system where robot learns from
scratch, using sensors and information obtained from humans.

Keywords: Semantic localization, multimodal HRI, human-robot inter-
action, sensors, lifelong learning

1 Introduction

Robot localization is a key problem on mobile and autonomous robotics. Tradi-
tionally, localization has been solved following a topological approach, that is,
using range finder sensors to find geometrical features in a predefined map of the
environment. When the map is also built at the same time the robot is trying
to localize itself, the problem is known as SLAM. However, humans do not use
exact map representations to figure out where they are located. This localization
can be done by just observing some important elements of the environment, in
such a way that if we return to a previously visited place, we can recognize it by
just re-observing those elements. In addition to this, the information extracted
from a fluent process of human-robot interaction (HRI) can also be helpful. That
is, the knowledge about objects and their relation with the place where they are
located can be used to improve current and future localizations. For example,
the presence of cutlery commonly indicates that a robot is located in a kitchen,
even if it has never been there before. Moreover, both localization and human-
robot interaction rely on an internal representation that should be maintained
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by means of a lifelong adaptive cognitive architecture. This paper presents a
brief current state of the art in multimodal HRI and semantic localization. As
far as we know, there exists very few works dealing with these two problems
in a common framework. Then, we propose some ideas about how to perform
robot localization by fusing the semantic information to be gathered from the
environment, but also from the interaction process with humans. What is more,
our proposal is intended to start from total uncertainty about the environment,
and without any previous kind of human-robot interaction knowledge.

2 Multimodal Human-Robot Interaction

Human-robot interaction (HRI) is the research field that studies all the possi-
ble ways that can be used between robots and humans to interact. While first
communication approaches were based on computer specific commands, recent
social robots can interact with humans using natural language, facial expres-
sions, body language or even expressing emotions. The main objective of HRI
is to develop a natural communication system with robots, allowing them to
accomplish interactive tasks in human environments in an easier way.

It may be considered that verbal communication is enough to solve interac-
tion problems between humans and robots, but it has been proved that the use
of more input data sources improves the performance, as well as it allows for
a more natural interaction [4, 9]. In this way, robots can use visual information
to detect the human body language, or audio sensors and actuators to perceive
and simulate voice intonation [1].

2.1 Sensors and Actuators

Interaction between humans is composed of many elements, such as verbal lan-
guage and intonation, facial gestures or body language. In order to achieve a
similar multimodal interaction between robots and humans, it is indispensable
to provide the robot with the appropriate set of sensors and actuators.

Sensors are used to receive input signals like sound and images. These signals
should be processed to obtain valid information about human interlocutors and,
in consequence, improve the interaction process. Due to the importance of verbal
communication in human interaction, microphones are one of the key sensors
used by robots to receive information. Other sensors with special relevance are
cameras. They can be used to detect emotions, gestures or characteristics from
humans. Some cameras can also capture depth data, and they complement or
even substitute sonar and laser devices. Tactile sensors can also be used to obtain
data, such as tactile areas or complete skins [11, 5]. On the other hand, actuators
are the devices used to execute the desired output commands. For instance,
actuators will be in charge of movement and sound output. The robot will use
its actuators to provide feedback to human interlocutors. Speakers are commonly
used to incorporate verbal communication output to the robot, and can also be
used to provide simple sound feedback too. Other elements like robotic arms or
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faces can be used to express emotions and gestural information, but also with
manipulation purposes. Some common sensors and actuators used in robotics
are shown in Fig. 1.

Microphone Camera RGB-D Camera

Speakers Robotic arm Robotic face

Motors Tactile Sensor

Fig. 1. Exemplar sensor and actuators.

2.2 Proposals

Recently, improved and novel interaction systems have been proposed to enhance
human-robot communication. A very interesting interaction system is presented
in [29], where a haptic creature is used to introduce touching as an interaction
method. This system defines a set of touch gestures that humans can use to
interact with the robotic creature, and each gesture causes a different reaction.
Physical HRI is also discussed in [14], which presents a machine learning algo-
rithm focused on improving physical interaction between robot and human. Both
articles highlight the importance of physical contact to improve the interaction
process. Interaction can be also enhanced by using complex robotic human-like
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heads to express emotions and gestural information, as presented in [7]. This
robotic head includes eyes, eyebrows, mouth and neck, and is capable to detect,
classify, imitate and generate facial expressions in real time.

Special attention should be paid to correctly incorporate different interaction
types to achieve multimodal communication. The work presented in [25] mixes
speech recognition and synthesis with head and gestures detection. More recent
articles have improved this communication scheme by introducing a more com-
plete set of body gestures detection and expression [28], or a mechanism to give
positive and negative feedback using gestures and speech based on rewards [3].
Multimodal interaction systems have been also developed for commercial robots.
For example, Nao robots (Fig. 2) can be programmed to improve their commu-
nication capabilities, as can be seen in [15, 8, 6]. This robot can be adapted to
be used in therapy by mixing speech, gestural and tactile information as shown
in [24].

Fig. 2. Aldebaran Nao humanoid robot.

Another key aspect is how to model HRI, this is a research topic that has
also received some attention lately. In [23], a Dynamic Neural Field is used to
model cognitive processes and link them with robot sensors and actuators in
order to enable interaction. In [17], a multimodal dialogue system is constructed
using a POMDP-based system.

3 Robotic Semantic Localization

Semantic localization [27] consists of answering the question ”where am I?” by
means of tags or labels describing the place where the robot is located. This kind
of localization is similar to human localization, and it differs from traditional
navigation-oriented localization techniques like distance-based or topological-
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based ones. Semantic maps can complement geometrical ones by adding infor-
mation about objects and areas on them. This semantic information consists of
natural language tags, which facilitates the communication between robots and
humans.

Semantic localization involves two different tasks, scene categorization and
object identification, based on robots perceptions. On the contrary to topological
localization, where range data is the main source of information (laser or sonar
readings), images are the best alternative for semantic localization. Scene cate-
gorization and object identification can be performed independently. However,
they are expected to be jointly managed by taking advantage of the inherent
relationship between areas and objects. For instance, if a fridge has been iden-
tified, the fact that the robot is placed in a kitchen is very likely. Fig. 3 shows
the semantic annotation for an image acquired in a warehouse.

Input Image Ground Truth

Scene: Warehouse
Objects
Table
Chair
Book
Socket
. . .

Fig. 3. Semantic Localization Annotations for an exemplar image.

Semantic localization is commonly managed as a set of classification problems
where input data correspond to robot perceptions and classes to scenes/objects [27].
Initial classification models can be generated from some of the existing datasets
like KTH-IDOL [18], COLD [21] or ViDRILO [19]. Input data should be pro-
cessed to extract an appropriate representation, which is usually done through
computer vision techniques. GIST [20] and Histograms of Gradients (HoG [10])
are some of the well-known global image descriptors used in semantic localiza-
tion. Regarding the classification model, Support Vector Machines (SVMs) is
the most common approach due to its proper handling of numeric input data
and fast classification time. However, other approaches as Bayesian classifiers
can also be applied [22].

Semantic localization can also be performed along with spatial localization,
as the proposal presented in [13]. The link between spatial and semantic repre-
sentations is generated by means of anchoring [12, 16].

4 Relation between Multimodal HRI and Semantic
Localization

Semantic information of the environment can be acquired by the robot in sev-
eral ways. Usually, this task is performed using vision and range-finder sensors.
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However, that detected semantic information can also be obtained and improved
with HRI. This interaction complements the semantic localization, providing
additional information about uncertain features and helping to reach a correct
conclusion [26]. This kind of active learning model is specially useful in changing
environments, where the robot would be able to adapt to new objects and places.

The general pipeline of a task based on robot vision will include the following
steps: a) capture an image, b) segment the image and/or identify the keypoints
with more relevant information, and c) generate either a local representation of
the information encoded around the keypoints or a global representation. These
image descriptors can be used for other tasks like matching or registration. For
object detection purposes, the most common approach would segment the input
image and generate a global descriptor of each segment to use with a classifica-
tion method. This, however, requires the use of a initial training database for
classifying. Here we propose to take advantage of the HRI to gather informa-
tion about relevant objects and locations, given an initially unknown knowledge
about the environment. Thus, the robot can ask the human about objects to
obtain information and update its internal representation model. After obtain-
ing enough information of an object/location, the robot will be able to detect
them without further human intervention. This multimodal approach would en-
able the robot to learn about new objects and places, as well as to discover the
inherent relationships between them.

Then, semantic localization is expected to be performed by labeling places
based on object detection. Once the robot knows that a place called ’kitchen’
contains objects tagged as ’cup’ and ’spoon’, it will know that it is placed in
a kitchen when these objects are detected. Similarly, if the robot knows that it
is placed in a bathroom, it should look for objects like toilet, but not fridge.
Regarding this, it is important to highlight that semantic localization works in
multiple ways. On the one hand, if a human ask the robot to perform an action
involving an object in a known place, the robot internal representation model will
be updated to link this object with this location. On the other hand, if a human
talks about a known item and the robot is in an unknown place, the robot can
infer its location given the relationship between this object and a place. In Fig. 4
we show an example of how the combination of different information sources in
HRI can improve semantic localization.

In general, this approach is useful to improve both HRI and semantic local-
ization. For example, the robot can ask a human about an unknown detected
object in order to classify it with a semantic tag (the name of the object) and, in
consequence, improve the object classification model and the semantic knowledge
about the robot location. And this new information can then be used to enhance
interaction with humans, as the robot will have a higher understanding of its
surrounding. Furthermore, the robot can ask about a known detected object
to improve communication and interaction capabilities based on the vocabulary
used by the human to describe this known object. These capabilities can be used
to construct a lifelong learning model. Fig. 5 describes some situations in which
semantic localization benefits from HRI.
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Fig. 4. Semantic Localization based on multimodal HRI.

Recent research on this topic include systems where semantic labels are ob-
tained through conversation with humans [26]. This semantic labels are mixed
with topological information obtained with range-finder sensors. However, the
vast majority of the systems proposed assume an initial state with prior infor-
mation, so results depend on the initial knowledge base. Another interesting idea
can be found in [2], where a graph-based vision system is used to guide an spoken
conversation with a human, mixing object detection and multimodal HRI.

5 Discussion

The purpose of this paper is to propose a lifelong semantic localization system
for mobile robots integrating information obtained by interacting with humans.
This system will be based in an initially empty knowledge base that has to
be completed using the information obtained through the different information
sources to create a representation of the environment mainly based on semantic
tags.

On start up, the robot will have no knowledge about where it is placed,
so it should start listening and observing its environment. This independent
exploration of its surroundings, will help the robot to create an unsupervised
first basic model. Later, to incorporate an actual multimodal HRI, the robot will
perform a human detection process. Once a human has been detected, the robot
must determine if the person is willing to answer its questions. Then, it can ask
the appropriate questions to fill the gaps in its knowledge model. Additionally,
the robot will also ask about known elements sometimes to improve its knowledge
base. For example, a conversation with a human about a known item can be used
to improve the speech abilities. This way, the robot can learn how the human
talks about this specific item, and use it to define this or other objects in the
future.

In conclusion, the main goal of this proposal is to build a system able to
learn new objects, spaces and the relations between them. Then, in the appro-
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HRI Semantic Localization

Robot detects an unknown
object and asks a human
about it

– A semantic tag is added to the object.
– If the object has the same name than a previously

known object, the robot updates the information
about it.

– The object is included into the map representation.
– If the robot is located in a known area, the object

probability to appear in this kind of area increases.

Robot detects a known ob-
ject and asks a human about
it

– If the human confirms that the robot prediction is
correct, robot’s confidence to detect this type of ob-
ject improves.

– If the human informs that the robot prediction is
not correct, robot’s confidence to detect this type of
object decreases, and the spotted object is tagged
using the new information provided by the human.

Robot asks the name of the
room/place.

– The robot tags the place and links the spotted known
objects with this place.

A human talks about an ob-
ject in the room/place.

– The robot links the object with the place.
– If the robot hasn’t seen the object, it will try to spot

it for some time. If the object is not found, the robot
asks the human where the object is.

Fig. 5. Situations in which semantic localization benefits from HRI.

priate situations, the robot can use the input provided by a human interlocutor
to improve both, its semantic representation of the world and its interaction
capabilities.
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