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Abstract. In this paper we present a new interaction system for Scha-
effer’s gesture language recognition. It uses the information provided by
an RGBD camera to capture body motion and recognize gestures. Scha-
effer’s gestures are a reduced set of gestures designed for people with
cognitive disabilities. The system is able to send alarms to an assistant
or even a robot for human robot interaction.
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1 Introduction

This work focuses on part of the human-robot interaction, which is the branch
of computer science and robotics that studies and develops new paths in the
communication process between humans and robots. Human-robot interaction
is a multidisciplinary field that includes topics such as artificial intelligence,
robotics, design, social sciences and natural language understanding.

People with some kind of disability are a group that requires special attention
from governments, and people with cognitive disabilities (learning difficulties,
cerebral palsy, etc.) are a special group within that. Caregivers and educators
need a way to communicate with these people. For that purpose, a special gesture
set was developed by Schaeffer et al. [18]. To the best of our knowledge, there does
not exist any system that is able to recognize these gestures. In this paper, we
present a system that is specially designed for Schaeffer’s gestures. The system,
besides gesture recognition, is able to send messages to a person or robot to
provide human robot interaction.

Gesture languages based on hand poses (i.e. static gestures) or movement
patterns (i.e. dynamic gestures) have been used for implementing command
and control interfaces [1–4]. Gestures, which involve spontaneous hand and arm
movements that complement speech, have proven to be a very effective tool for
multimodal user interfaces [5–9]. Objects manipulation interfaces [10–12] use the
hand for navigation, selection and manipulation tasks in virtual environments.

Several applications, such as heavy machinery control or manipulators, han-
dling computer-based avatars or musical interaction [13], use the hand as an
efficient control device and with a high degree of freedom (DOF). And lastly,
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some applications such as surgical immersive VR simulations [14] and training
systems (VGX, nd), include the manipulation of complex objects in their own
definition.

Almost all human computer interactions (HCI) systems based on gestures
use hand movements as the main input. Currently, the most effective motion
capture hand tools are electromechanical or magnetic detection devices (data
gloves) [15,16]. These devices are placed on the hand to measure the location and
angles of the finger joints. They offer the most comprehensive set of real-time
measurements, are application-independent and allow full functionality of the
hand in HCI systems. However, they have several disadvantages in terms of use,
and are very expensive, hinder the movement of the hand, and require complex
calibration and installation procedures to obtain accurate measurements.

Computer vision represents a promising alternative to data gloves because
of its potential to provide a more natural interaction without intrusive devices.
However, there are still several challenges to overcome for it to become more
widely used, namely precision, speed processing, and generality, among others.
Among the different parts of the body, the hand is the most effective tool for
general purpose interaction, due to its communicative and manipulative func-
tionality. Some trends in interaction tend to adopt the two modalities, thus
allowing an intuitive and natural interaction.

The paper is structured as follows. In Section 2 we briefly introduce Scha-
effer’s gestures, what they are used for, and how they can help cognitively dis-
abled people. Section 3 describes the general system architecture and explains
the modules of the system: the input data, preprocessing and classification. Next,
in Section 4 we present some experiments that run the gesture recognition sys-
tem with different parameters over a set of recorded gestures in order to test
its performance. Finally, we draw some conclusions and outline future work in
Section 5.

2 Schaeffer’s gestures

In 1980, Schaeffer, Musil and Kollinzas published a book entitled “Total Com-
munication: A signed speech program for non-verbal children” [18] in which they
lay the groundwork for interaction among people who are not able to speak, and
they describe a complete sign language so that these people can relate to others
more effectively.

The speech signed program is an example of a system of signs (as classified
by Kiernan [19]) in which the therapist introduces the user to the speech signed
language. It follows the structure of oral language, and some spoken words are
accompanied with signs. The real strength of this system is that its use is based
on the child’s overall development framework. The study of common develop-
ment enables us to understand the communicative disorders that certain diseases
cause. We can use this speech signed program without special authorization or
training and it can be modified to meet the personal needs of the people who
might use it.
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Fig. 1. Schaeffer gestures for ”Sandwich” and ”Water”

Its learning and use do not obstruct or hinder, or, therefore, slow the onset of
language, quite the opposite, they promote and motivate language onset and /
or development. Both this Alternative Communication System (ACS) and other
alternative systems can be not only augmentative enhancers of speech but they
”unlock” this way of communication as unique and allow others to be developed.
The theoretical basis for ACS appeared in the USA in 1980, and a revised edition
was published in 1994. Currently there is no Spanish translation of the original
book or its revised edition, but there is an adaptation written by Antonia Rebollo
Garcia [20].

This project can recognize a subset of Schaeffer gestures (Water, Help, Sand-
wich, Sleep, Shower, Sick, Clean, Mom, Dad, Want, Dirty), but we aim to recog-
nize the complete Schaeffer language in the future. The system architecture, the
modules that compose it and the information flow is detailed in the following
sections.

3 Gestures recognition

3.1 System Overview

In Figure 2 we can see the overview diagram of the system. When a person makes
a gesture in front of the camera, the motion is captured by a Kinect camera.
This information, summarized and packaged, is what the system understands
as a gesture. The “gesture” object is sent to the Gesture Class Pre Selection
(GCPS) module, which quickly executes with a naive selection of a subset of
possible classes for the gesture, discarding others to improve performance. Then,
both the subset of possible-candidates classes and the gesture itself are sent to
the classifier. The classifier compares the unknown gesture with every gesture
present in the model using Dynamic Time Warping (DTW) [21], and it uses
the Nearest Neighbor (NN) algorithm [22] to select the one with the shortest
distance, and its class is returned as the tag for the unknown gesture. This
result is then sent to a user or robot. The whole process is executed online.
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There is also an offline stage that handles the training of the model, the
editing process and the condensing process in order to obtain a fitted and error
free model.

Fig. 2. System architecture

3.2 Kinect v2

Kinect is an RGB-D camera capable of capturing the color and depth of a scene
separately. The color stream is obtained with a common high definition RGB
digital camera and for the depth stream it sends light beams that reflect on the
surfaces and return to the sensor. By measuring the time difference between the
emission and reception it calculates the depth of the element reflecting the beam.

This device is capable of capturing color images at a resolution of 1920x1080,
while the depth images are at a resolution of 512x424. But Kinect is not only
capable of generating this information, it is also able to capture audio and its
direction of origin, obtain point clouds with color, segment elements such as
bodies and other objects, and most importantly for the task at hand, it is able
to detect the joints of the skeleton of a person, which is ideal to detect gestures.
Kinect v2 is able to capture up to 25 joints, although our recognition system
only uses 11 joints for the upper part of the body of the person, the others are
ignored.

3.3 Gesture

Once Kinect has captured these 11 joints of interest, two tasks are carried out
before proceeding to the next module of the system: first, the points are grouped
by joint type in order to facilitate the DTW comparison process in the classifier
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module, and then it runs a downsampling process in order to speed up the
system. Kinect captures information at 30 fps, which mean 330 points per second
as long as a gesture lasts. Working with this amount of data means a high
computational cost, so the system reduces the information. The downsampling
method used is KMeans with 20 centroids.

In addition, it is necessary to obtain independence of the angle at which the
subject is located when performing the gesture and its position in the scene.
For this purpose, a change of the reference system to the points captured is
performed. First, the system obtains two vectors, one from the neck joint to the
right shoulder joint, and another from the neck joint to the head joint. These
represent the X and Y axes of the new reference system. The Z axis is obtained
by performing the cross product of these two vectors. Then, the transformation
matrix is calculated from the rotation and translation between the new reference
system and the camera reference system. Finally, the transformation matrix is
multiplied by all the points that compose the gesture. In Figure 3 some gestures
and their associated point cloud are shown.

Fig. 3. ”Clean” and ”Sleep” gestures with their associated joint point clouds

3.4 Gesture Class Pre Selection

The classification process compares the unknown gesture with all the gestures
that make up the model, making it possible to accelerate the process by com-
paring only with a subset of gestures.

This Gesture Class Pre Selection (GCPS) module implements a series of naive
but very fast to evaluate rules which examine the gesture features, such as hands
position or point cloud centroids, and is able to discard some classes. For exam-
ple, if the gesture for “Want” is performed with the hand below the shoulders at
all time, all the gestures that are performed above them are automatically dis-
carded. In this way some classes are taken as impossible and discarded, so when
the comparison with the model occurs, it contains a reduced set of examples,
which leads to an improved run time. The rules are evaluated in order and if the
gesture does not meet any of the rules, the classifier runs with the full model.
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3.5 Classifiers

In the classification process, distance of dynamic time warping between the un-
known gesture and every gesture that composes the model is calculated. The
distance between two gestures is calculated by adding the partial distances aris-
ing from comparing each point collection of each joint (that is why they are
packed in such a way in the Gesture module). The system computes the dis-
tance from the unknown gesture and every gesture of the model. The nearest
neighbor [22] algorithm is then executed and its class is returned as the label for
the unknown gesture.

A philosophy of early abandon is also applied as follows: after each compar-
ison between the unknown gesture and a gesture of the model, a check is run to
see if the distance returned is the minimum distance so far, and if so it is stored.
This distance is sent to the following comparison as a threshold value and if at
some point of the comparison between two gestures the partial distance obtained
is gretaer than that threshold, the algorithm finishes. In this way we improve
the run time of this module [24].

3.6 Model

The model is composed of all the gestures that the system has learned. These
gestures have been obtained from several people who were recorded with Kinect
as they performed every gesture several times. Then the gestures were labeled
and stored. Within the model there are gestures that were not properly per-
formed, mislabeled or provide redundant or useless information. To eliminate all
these problems two processes are carried out.

First, the editing algorithm [25] is applied so that mislabeled gestures are
discarded, and then the CNN algorithm [26] is executed. The latter extracts
only those examples that actually provide new information to form the final
model. This whole training process is performed offline. The model used by the
final recognition system is composed of 253 different gestures spread over 11
classes as shown in Fig 4.

4 Experiments

The experimentation consists in using the system to classify a collection of 264
gestures captured with Kinect. In this collection there exist 24 examples of each
gesture type performed by five different persons. The classifier was set up with
different parameters in order to discover the configuration that provides the best
performance:

– Downsampling with 20Means, with GCPS activated and using kNN k=3 for
the classifier

– Downsampling with 20Means, with GCPS deactivated and using NN for the
classifier
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Fig. 4. Amount of prototypes.

– Downsampling with 20Means, with GCPS activated and using NN for the
classifier

– Downsampling with 10Means, with GCPS activated and using NN for the
classifier
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Figure 5 shows the results for the different parameters. The system set-up
that provides the best success rate is the one downsampled with 20Means, with
the GCPS module deactivated and using NN for the classifier method. However
this configuration requires too much run time, as the following plot shows, mak-
ing it impractical for real time uses, which is what this project aim to address.
Figure 6 shows that the fastest method for gesture classification tasks is the
10Means, with the GCPS module activated and using NN, but its success rate
is below the threshold of acceptance. The second fastest system configuration,
the one downsampled with 20Means with the GCPS module activated and using
NN, provides a very high success rate, making it the best option with a reason-
able ratio of success rate to elapsed time. In this figure the elapsed run time of
a 5 cross validation lap for these four configurations is shown (a lap is composed
of 55 unknown gestures classifications).
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Fig. 6. Execution time for a five cross validation round.

Although the GCPS module introduces an error, it improves the execution
time in every case while providing a high success rate, so its use is justified. We
can see how the configurations with 20 means improve the execution time as
well, while the 10 means provides the best run time but fails in terms of the
success rate. Regarding the classification algorithm, the 3 nearest neighbours
provides a high success rate but with a prohibitive processing time. Instead of
that, the best option is to use the nearest neighbor algorithm, which not only
provides a high success rate but is also faster.
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So, in the light of the experiments, the best set-up for the gesture classifi-
cation task is provided by the NN, GCPS activated and 20Means summarized
system.

5 Conclusions

This approach provides an innovative, customizable and reliable system for Scha-
effer’s gesture language detection using Kinect, and oriented to human-robot in-
teraction for everyone, including people with cognitive disabilities, who can use
this system to communicate with a person or robot companion.

The system can only recognize a subset of 11 different gesture classes, but
we aim, as future work, to recognize the whole of Schaeffer’s sign language and
implement a system to detect when a gesture starts and ends in order to create
a continuous real-time classification system.
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especiales en el área de comunicación/lenguaje : programa de comunicación total
habla signada de B. Schaeffer”. Conserjeŕıa de Educación y Universidades de la
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