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Abstract. In the world today, there is a need to extract knowledge
from large volumes of data, commonly known as Big Data. This data
is characterized not only for a high number of instances, but for its
high dimensionality, that is a high number of inputs features and even
output classes. Classical machine learning methods must be adapted
and re-implemented utilizing more performance paradigms for extract-
ing knowledge from these data sets. An example of these paradigms is
Map-Reduce, that promotes the parallel and distributed run of the imple-
mented methods. Spark is a powerful cluster computing platform based
on Map-Reduce.
Due to dependencies between data that involve a multi-pass computing
mode, there are not implementations of Artificial Neural Networks mod-
els in well-known machine learning libraries such as Mahout or MLlib.
In this paper a Spark implantation of the genetic method to develop
Radial Basis Function Networks, GenRBFNSpark, is presented. In the
experimentation, different stage times were taken when the algorithm
was run with diverse configurations. These times demonstrate that Gen-
RBFNSpark achieves a remarkable speed up with respect to the local
version.
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1 Introduction

Nowadays, we are living in a new age where millions of data is produced in
our world, from different sources and every minute. These sources are numerous
and heterogeneous because data of almost every process (medical, industrial,
social, ...) can be recorded or stored in distinct media [4]. Obviously, several
new challenges are appearing for managing these data. Thus, Big Data can be
defined as a field composed by different technologies in order to store, process,
analyze, visualize, etc., large data volumes.

Big Data [11] is characterized by its well-known Vs: great Volumes of data,
great Variety of formats, high Velocity in the generation of the data, mecha-
nisms to ensure the Veracity of data and so on. All these adjectives describe
the difficulties for working in the Big Data field. Data Science appears with the
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objective of extracting knowledge from these volumes of data, on the basis of the
traditionally extracting knowledge tasks. However, Data Science needs for new
technologies, instruments, etc. to address new challenges. Spark [9] is one of these
new technologies that implements a cluster computing platform for Big Data,
allowing processing these large volumes of data using the Map-Reduce paradigm.
Spark has proven its efficiency versus other Map-Reduce technologies, such as
Hadoop [14]. Moreover, it provides MLlib [7] a library with multiple machine
learning algorithms.

Radial Basis Function Networks (RBFNs) [2] are one of the most important
Artificial Neural Network (ANN) paradigms in the field of Machine Learning.
RBFNs have important features such as: a simple topological structure; the
possibility of extracting rules; a universal approximation capability; and that
each neuron/RBF has a characteristic locally-tuned response. RBFNs have been
successfully applied in most important machine learning areas [3].

However, until now it is difficult to find an ANN Map-Reduce implemen-
tation in machine learning libraries, such as MLlib or Mahout, or even in the
specialized bibliography. This is due to the existent dependencies between data
when an ANN is trained that implies multi-pass computations, a scenario where
traditional Map-Reduce technologies, as Hadoop, were inefficient. One way to
design RBFNs is the Genetic paradigm [10]. However, this successful line re-
quires a high computational cost. In this paper, GenRBFNSpark, an efficient
implementation of a Genetic RBFN design algorithm in Spark is presented.

In the experimentation section, GenRBFNSpark is run with different configu-
rations and stage times were taken. These times demonstrated that an important
speed up was achieved. Also the experimentation carried out allows to charac-
terize the data sets in order to know in advance what are the parameters that
will influence their run time.

The text is organized as follows. In Section 2, Spark technology is described.
A explanation of RBFNs are shown in Section 3. The model proposed Gen-
RBFNSpark, is described in Section 4. Finally, the analysis of the experiments
and the conclusions are shown in Sections 5 and 6, respectively.

2 Spark

Spark [9] can be defined as a big data processing technology that runs over a clus-
ter platform. As programming model it implements the Map-Reduce paradigm
[5]. Spark is an open source project and started in 2009 as a research project in
the UC Berkeley RAD Lab, later the AMPLab. The researchers in the lab had
previously been working on Hadoop Map-Reduce [14], an adequate solution for
one-pass computation, but not very efficient when multi-pass computations are
required. Spark presents several advantages [9], compared to Hadoop or other
MapReduce technologies, such as: it allows developing multi-step data pipelines
using directed acyclic graph (DAG) pattern, supports in-memory data sharing,
runs on top of distributed file systems technologies as Hadoop Distributed File
System (HDFS), provides 80 high-level operators or an interactively query data
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shell, supports SQL queries (Spark SQL), streaming data (Spark Streaming),
machine learning MLlib), graph data drocessing (Spark Graph X), supports dif-
ferent languages as Java, Scala, Python or R. In summary, from an efficiency
point of view, Spark applications run up to 100 times faster in memory, 10 times
faster when running on disk, than Hadoop applications.

The main element in Spark is the resilient distributed data set (RDD), which
represents an immutable collection of objects partitioned across a set of ma-
chines. RDDs are fault tolerant, thus if a partition is lost, the RDD has enough
information able to rebuild just that partition. An RDD can be cached in mem-
ory across machines and can be reused in multiple parallel operations. An RDD
allows two types of operations: Transformations and Actions. A transformation
returns a new RDD. Some of the transformations operations are: map, filter,
flatMap, groupByKey. etc. An action operation evaluates and returns a new
value. Examples of actions are: reduce, collect, count, first, etc. An important
difference between transformations and actions is that transformations are ”lazy”
operations and therefore any result is computed, all the calculations are sched-
uled. However when an action function is called, all the processing queries, even
the scheduled, are computed at that time and a result value is returned.

A key issue for the data science is that Spark provides a machine learning
library, MLlib [7]. This library has multiple machine learning algorithms, includ-
ing classification, regression, clustering, dimensionality reduction and frequent
pattern mining, among others. In order to work with these algorithms MLlib
defines different data types such as MLlib local vectors and matrices, stored on
a single machine or in a distributed way. Another well-known machine learning
library is Mahout [13] but it is implemented over Hadoop, therefore MLlib can
outperforms Mahout in similar efficiency orders that Spark outperforms Hadoop.

3 Radial Basis Function Networks

From a structural point of view, an RBFN is a feed-forward neural network with
typically three layers: an input layer with n nodes, a hidden layer withm neurons
or RBFs, and an output layer (Figure 1).

The m neurons of the hidden layer are activated by a radially-symmetric
basis function, φi : Rn → R, which can be defined in several ways, being the
Gaussian function the most widely used:

φi(x) = φi(e
−(‖x−ci‖/di)

2

) (1)

where ci ∈ Rn is the centre of basis function φi, di ∈ R is the width (radius),
and ‖‖ is typically the Euclidean norm on Rn. In order to deal with nominal
attributes the HVDM [15] distance is used. The output node implements the
following function, where weights wij show the contribution of an RBF to the
output node:

fj(x) =

m∑

i=1

wijφi(x) (2)
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Fig. 1. RBFN Topology

The objective of any RBFN design process is to determine centres, widths
and weights. The most traditional learning procedure has two stages: first, unsu-
pervised learning of centres and widths, and then, supervised learning of output
weight.

An important paradigm for the RBFN design is Evolutionary Computation
(EC). EC uses natural evolution and stochastic searching to design optimization
algorithms. A review of EC applied to RBFN design can be found in [3] and the
genetic subfield is reviewed in [10].

4 GenRBFNSpark method

GenRBFNSpark is a re-implementation of the Genetic RBFN design method
published in [12], for adapting it to the Map-Reduce paradigm promoted by
Spark. This method is based on the traditional Pittsburgh evolutionary approach
for the design of RBFNs. In this approach each individual is a whole network
and therefore contains the coordinates of the center, widths and weights for
each RBF. A real codification of the individuals was used considering a variable
number of RBFs. The objective of the evolutionary process is to minimize the
classification error. The best individual will be the optimal network. The main
steps of this algorithm are shown in Algorithm 1.

As an initialization step, for each individual, a random number of neurons
(RBFs) between a lower limit and upper limit is considered. The RBFs are
allocated using the K-means algorithm [6]. Thus, each RBF center, ci, is placed
on a prototype returned by the K-means algorithm. The RBF widths, di, will
be set to the average distance between the centers and finally, the RBF weights,
wij , are set to zero.

After the initialization, weights are trained using the SVD algorithm [8].
A tournament selection mechanism is applied to the whole group in order to

determine the new population. The diversity of the population is promoted by
using a low value for the tournament size (k = 3).

Mutation and recombination operators are applied to the new RBFNs popu-
lation. Six mutation operators, usually considered in the specialized bibliography
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Algorithm 1 Main steps of Genetic method

Initialize RBFN
Train Weights
Evaluation
while Number of Generations not Achieved do

Mutation
Recombination
Train Weights Offspring
Evaluation Offspring
Selection

end while

[10], were implemented. They can be classified as random operators or biased
operators. The mutation random operators are:

– DelRandRBFs: randomly eliminates k RBFs, where k is a pm percent of the
total number of RBFs in the RBFN.

– InsRandRBFs: randomly aggregates k RBFs, where k is a pm percent of the
total number of RBFs in the RBFN.

– ModCentRBFs: randomly modifies the center of k RBFs, where k is a pm

percent of the total number of RBFs in the RBFN. The center of the basis
function will be modified in a pr percent of its width.

– ModWidtRBFs: randomly modifies the center of k RBFs, where k is a pm

percent of the total number of RBFs in the RBFN. The width of the basis
function will be modified in a pr percent of its width.

Mutation biased operators which exploit local information are:

– DelInfRBFs: deletes the k RBFs of the RBFN with a lower weight. k is a
pm percent of the total number of RBFs in the RBFN.

– InsInfRBFs: inserts the k RBFs in the RBFN outside the width of any RBF
present in the RBFN. k is a pm percent of the total number of RBFs in the
RBFN.

With the crossover (recombination) operator two individuals (RBFNs) par-
ents are chosen to obtain an RBFN offspring. The number of RBFs of the new
individual will be delimited between a minimum and a maximum value. The
minimum value is set to the number of RBFs of the parent with fewest RBFs.
In the same way, the maximum value is set to the number of RBFs of the parent
with most RBFs. In order to generate the offspring, RBFs will be chosen from
the parents at random.

After applying mutation operators, weights are trained using the SVD algo-
rithm. In the evaluation step the fitness for each individual/RBFN is defined as
its classification rate.

As it is well known, with Pittsburgh genetic algorithms, where the only ob-
jective to optimize is the classification error, the complexity of the individuals
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(i.e. number of RBFs) grows in an uncontrolled way (because an RBFN with
more RBFs usually gives a lower error percentage than an RBFN with fewer
RBFs). In this way a maximum and a minimum complexity (chromosome size)
was established.

4.1 Key issues in the implementation of GenRbfnSpark

As mentioned, GenRbfnSpark is an implementation of the genetic RBFN design
method published in [12], using the Map-Reduce paradigm included in the Spark
environment. As base programming language Scala, the native programming
language of Spark, is chosen. The fundamentals of the classic genetic method-
ology are followed and the parallelism promoted by Spark-Scala is exploited to
speed-up the most costly steps such as training or evaluation but in no case
the individuals are trained with a portion of the data. As advantage this imple-
mentation maintains the good performance properties of the genetic algorithms
without risk of possible losses in the classification rate.

If the main steps of GenRbfnSpark are analyzed, the following key steps must
be highlighted: the initialization step, the weights learning phase and the evalu-
ation (fitness calculation) step. In these steps the whole data set and therefore
all the instances are processed for each individual or RBFN. This implies the
calculation of the network outputs and therefore of RBFs outputs, using the
HVDM distance, a costly measure. In comparison, the remaining steps that in-
volve different operations over the individuals have a cost almost negligible. In
this way, we defined and RDD of instances to promote a distributed and fault
tolerant environment for operating across the machines of the cluster. In the
initialization phase, as we need a version of K-means, we adapted the existing
K-means Spark code in the examples directory of the official Spark distribution.
This adaptation takes into account: the use of the HVDM distance, implemented
by the authors, in order to adequately address nominal attributes; a new add
operator for vectors that contain nominal attributes and a sub-procedure to de-
tect similar prototypes, in this case these prototypes are substituted for new
instances.

For the weights calculation step, we used the SVD algorithm, specifically the
SVD version implemented in the MLlib library. Obviously, we wrapped this ver-
sion in a high order module that instantiate the necessary matrices and vectors,
such as the design matrix. At the end, the results are adequately processed in
order to correctly establish the weights of the RBFN.

Finally, evaluating (determine the fitness) an individual or RBFN is also a
costly process that involves processing all the instances of the data set in order to
obtain the classification error. For this a process a typical Map-Reduce operation
has been implemented. In the Map phase each instance is evaluated by the model
and the result is compared with the real output, return 1 if they are similar or
0 if they are different. In the reduce phase all these returns are added.
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5 Experimentation and Results

With the aim of testing the new GenRBFNSpark implementation the following
experimentation has been designed. To begin, five large data sets have been cho-
sen from Keel [1]: poker, census, connect-4, shuttle and letter. The description
of the data sets is in Table 1. The parameters used in GenRBFNSpark as ge-
netic algorithm are show in Table 2. Also, it was tested that achieves similar
classification rates that the original one presented in [12].

Table 1. Data set properties

#Attributes
Data sets (R/I/N) #Examples #Classes #Examples-Partition

poker 10 (0/10/0) 1025010 10 922508
census 41 (1/12/28) 142521 3 128269
connect-4 42 (0/0/42) 67557 3 60802
shuttle 9 (0/9/0) 58000 7 52199
letter 16 (0/16/0) 20000 26 18000

For each data set, three experimentations were carried out. As first exper-
imentation, GenRBFNSpark was run in local mode (with the option –master
local, one partition was generated). Then, GenRBFNSpark was run in cluster
mode with the standard parameters, this configuration divided the data in two
partitions. Finally, GenRBFNSpark was run in cluster mode forcing that data
was divided in four partitions. For each data set we run the first partition of 10
fold cross validation standard scheme. The cluster used has 16 nodes and each
node disposes of 2 x Intel Xeon E5-2670v2 and 64 GB of RAM.

Table 2. Parameters for GenRBFNSpark

Parameter Value

Generations of the main loop 100
Individuals 50
Minimum number of RBFs number of classes in the data set
Maximum number of RBFs twice the number of classes in the data set
Crossover probability 0.5
Mutation probability 0.1
Mutation widths/centers percent 0.2
Tournament size 3

Times (in seconds) consumed for each run are shown in Table 3. In this table
four times are shown for each partition data set: the initialization time (where
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the K-means algorithm was applied), the first training time for 50 RBFNs, the
first evaluation time (time for calculating the fitness of 50 RBFNs), and the total
time (that include the previous times and the time for run 100 generations).

From Table 3, the following analysis can be extracted. In general, for all data
sets, times were approximately divided by two when the standard cluster mode
was used (2 partitions) instead of the local mode (1 partition). In the same way,
times were approximately divided by two when four partitions are used instead
of two. These results show a remarkable speed up, around 2, that demonstrates
the adequate performance of the developed implementation.

For the run time behavior of GenRBFNSpark, it is necessary not only take
into account de number of instances, but also the number and type of input
attributes and the number of the output classes. In this way, the number of
attributes defines the cost of evaluating an RBF and the number of classes
affect to the number of the RBFs in the individuals. For example, letter has
fewer instances than census but many more output classes.

Now, the objective is to characterize the run time of a genetic RBFN paradigm
taking into account the parameters of a data set given. It can be observed as
shuttle, a data set with more than 50000 instances it is the fastest data set, faster
than letter, which have half of instances. This fact can be explained because shut-
tle has a number of input attributes and output classes relatively low. Therefore,
it is extracted as conclusion that in a genetic RBFN paradigm implemented in
Map-Reduce the run time are strong linked with the number of input attributes
and output classes and can be more important that the number of instances.

Finally, the classification rates achieved by the different runs of GenRBFNSpark
are showed in Table 4. As expected, the classification rate for a data set does
not depend of the partition configuration chosen for GenRBFNSpark.

6 Conclusions

Currently, there is a need for implementing classical machine learning methods
using Big Data computing technologies that speed up the run of large data
sets. An example of this technology is Spark, a cluster computing environment
that implements the Map-Reduce paradigm in a more efficiency way than others
technologies such as Hadoop.

There are not implementations about ANNs in the well-known machine learn-
ing libraries due to dependencies between data associated to the model compu-
tation. In this paper an implementation of the genetic paradigm for designing
RBFNs was presented. From the run times can be concluded that a remarkable
speed up was achieved when the algorithm is run. Also, the main characteristics
that influence the run time have been identified. Concretely, besides, the number
of instances or the number input features, the number of output classes and its
possible combination with nominal attributes penalize the run times.

Acknowledgments: This paper is partially supported by the Spanish Min-
istry of Science and Technology under the Project TIN 2012-33856, FEDER
founds.
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Table 3. Results: Run time in seconds

Data sets Step Local 2 Partitions 4 Partitions

poker

Initialization 29305 16006 6247
Train (50 Ind.) 4070 2032 1228
Evaluation (50 Ind.) 2246 1224 602
Total 177599 89639 50841

census

Initialization 9462 4915 2332
Train (50 Ind.) 1058 567 283
Evaluation (50 Ind.) 310 178 86
Total 39120 20836 10348

connect-4

Initialization 128 228 104
Train (50 Ind.) 340 194 45
Evaluation (50 Ind.) 142 94 15
Total 10585 6309 3299

shuttle

Initialization 1137 563 323
Train (50 Ind.) 168 89 51
Evaluation (50 Ind.) 65 47 23
Total 6196 3442 2065

letters

Initialization 1829 1065 521
Train (50 Ind.) 274 139 83
Evaluation (50 Ind.) 341 159 82
Total 16927 7953 4244

Table 4. Results: Classification rate

Data sets Local 2 Partitions 4 Partitions

poker 0.550 0.549 0.550

census 0.950 0.950 0.950

connect-4 0.620 0.658 0.666

shuttle 0.882 0.883 0.882

letters 0.661 0.675 0.670
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