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Abstract. In this paper we investigate the use of supervised classifica-
tion methods in speech imagery decoding. Using a set of different clas-
sifiers we show that classification subtasks may require different types
of classification approaches for accurately decoding. We obtain a clas-
sification accuracy that improves the best results previously published.
We further investigate the relationship between the classifiers and dif-
ferent sets of features selected by the common spatial patterns method.
Our results indicate that further improvement on BCIs based on speech
imagery could be achieved by carefully selecting an appropriate combi-
nation of classifiers for the subtasks involved.
keywords: speech imagery, brain computer interface, classification meth-
ods.

1 Introduction

Several studies have shown that it is possible to decode a variety of speech
components from neural activity [4, 5, 16, 18]. However, although phoneme and
word classification is possible, the conception of practical BCIs based on speech
imagery is still a long-term goal. One of the obstacles is that classification accu-
racies can depend very much on the type of neurological recordings used. While
invasive recordings taken from the cortex area show that classification accuracy
well above chance level can be obtained, linguistic decoding from EEG recordings
have not always been successful.

There are many issues involved in the ability to accurately recover speech
imagery from EEG data. For example, it has been hypothesized [19] that high
accuracy decoding results for words presented in blocks may be due to tempo-
ral correlated artifacts that are detected by the classifiers. In general, further
research is needed to elucidate the aspects that influence speech imagery recog-
nition. Two of these aspects are the choice of the classifier and the way this
choice is related to the method used for feature selection. It is expected that
gains in vowel imagery decoding could be obtained from a better understanding
of how the choice of the classifier is related to this particular type of mental task.

In this paper we present a detailed investigation of how the choice of the
classifier and the method for feature selection influence the classification accuracy
in the problem of vowel speech imagery recognition from EEG data. Ten different
classification methods are applied to EEG data obtained from three subjects in
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three different tasks: imaginary speech of the English vowels /a/ and /u/, and a
no action state as control [7]. We further extend the analysis of the classification
algorithms by evaluating how is their behavior related to the features produced
by different eigenvalues in the common spatial pattern (CSP) method [20].

2 Related work

A number of papers have proposed different variants for decoding imagined
speech from EEG data. Usually, only a subset of vowels and consonants is used
for the experiments or the word alphabet is very reduced. Similarly, one or few
classifiers are usually used to analyze the data without an exhaustive investiga-
tion of the role played by the classifier.

In [8], EEG signals were analyzed to decode the rhythm in which imagined
syllables were produced. 7 subjects performed 120 experiments for each combina-
tion of 2 syllables and 3 rhythms. Joint time-frequency analysis was conducted
using the Hilbert spectrum (HS) [14]. Features were extracted from the nor-
malized HS, and a Bayesian classifier based on multi-class LDA was applied.
Accuracies between 48.33% and 72.67% were obtained for the different subjects.
Notably, the relevant features found by the method helped to classify the imag-
ined speech rhythm but failed to classify both rhythm and syllable.

While the influence of the classifier choice has been investigated in other
scenarios for brain decoding tasks [22, 21, 28], few papers have addressed the
comparison of different classifiers in word imagery decoding problems. One of the
few exception is the work presented [24, 25]. This work investigated the ability
to decode the imagined words from a reduced five-word vocabulary in EEG
signals taken from 21 subjects. Information about four EEG-channels was used
for classification. They used discrete wavelet transform as features, and applied
three classifiers: naive Bayes, RF, and SVM. RF obtained the best average results
considering the 21 subjects. However, as also occurred in our experiments, the
ranking between the classifiers varied depending on the subject.

Chi et al. [6] achieved classification accuracies above 70% on pairwise compar-
isons between five imagined phonemes using LDA. Lower classification accuracies
were achieved in the same work using the Naive Bayes classifier. D’Zmura et al
[10] asserted the importance of using spectral features in the problem of clas-
sifying two different syllables with three different rythms. Hilbert envelopes of
each electrode waveform were computed and the average signal envelope across
each electrode was used to form a template for each class. Finally matched filters
were used for classification. A classification accuracy of 87% was obtained for
one of the four subjects included in the experiment.

3 Decoding problem

The general classification problem consists of decoding, from the EEG recordings
of a subject, one of the three possible classes (vowels /a/ and /u/, and a no
action state as control). However, we approach the problem as in [7], solving
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three different binary classification tasks that consists in distinguishing for every
possible pair of classes.

Three subjects participated in the experiment. Each subject was instructed to
perform three mental tasks: imaginary speech of the English vowels /a/ and /u/,
and a no action state as control. A randomly selected visual cue was displayed
on a computer monitor placed in front of the subject. Vowel /a/ was represented
with an image of an open mouth, vowel /u/ with an image of rounded lips, and
control with a continuation of the fixation cross. Subjects were instructed to
perform and maintain the appropriate task until the visual cue disappeared 2 s
later. Each epoch had a duration of 3 s, 1 s of pre-stimulus and 2 s of stimulus. 50
trials were performed for each task, resulting in a total of 150 trials per subject.

Each binary problem is called a task and the three possible tasks (F1,F2,F3)
are solved for each possible subject (S1,S2,S3). As an initial step CSPs are com-
puted from the EEG signals and features constructed using these patterns are
then used for classification.

3.1 Feature selection and common spatial patterns

The goal of the CSP method is to construct a number of distinctive time-series
whose variances contain the most discriminative information between the classes
[20]. The raw EEG data of a single trial is represented as an N × T matrix E,
where N is the number of channels and T is the number of samples per channel.
The normalized spatial covariance of the EEG can be obtained from:

C =
EE′

trace(EE′)
(1)

where ′ denotes the transpose operator and trace(x) is the sum of the diagonal
elements of x. For each of the two distributions to be separated (i.e., vowels /a/
and /u/), the spatial covariance C̄d,∈ [a, u] is calculated by averaging over the
trials of each group. The composite spatial covariance is given as

Cc = C̄a + C̄u. (2)

Cc can be factored as Cc = UcλcU
′
c, where Uc is the matrix of eigenvectors and

λc is the diagonal matrix of eigenvalues. Note that from now on the eigenvalues
are assumed to be sorted in descending order. The whitening transformation

P =
√
λ−1
c U ′c (3)

equalizes the variances PCcP
′ in the space spanned by Uc, i.e., all eigenvalues

PCcP
′ of are equal to one. If C̄1 and C̄r are transformed as Sa = PCcP

′ and
Su = PCcP

′ then Sa and Su share common eigenvectors B.
The projection of whitened EEG onto the first and last eigenvectors in B

will give feature vectors that are optimal for discriminating two populations of
EEG in the least squares sense. With the projection matrix W = (B′P ′), the
decomposition (mapping) of a trial is given as Z = WE. The columns of W−1

are the CSPs.
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In our experiments we used the same data investigated in [7] where the two
fist and the two last CSPs were used. Each CSP produces a vector of 128 features.

4 Classifiers

We select ten classifiers that differ according to their functioning principles,
search strategies, and efficiency considerations. Previously, only support vector
machines (SVMs) [26] had been applied to this data [7]. The classifiers selected,
as implemented in the scikit-learn software [17] programmed in Python language,
were:

– Regularized logistic regression with norm l1 (Ll1) [27]
– Regularized logistic regression with norm l2 (Ll2) [27]
– Linear discriminant analysis (LDA) [11]
– k-nearest neighbor classifier (KNN) algorithm [1] with k = 3 and using the

Euclidean distance
– Gaussian naive Bayes classifier (GNB)
– Gradient boosting (GB) [12] with the number of trees nt = 100 and the

maximum depth of the tree maxd = 11
– Random forests (RF) [2] with nt = 100 and maxd = 11
– Decision tree (DT) maxd = n
– Randomized decision trees (RDT) [13]
– Nearest-centroid classifier using Euclidean distance (NCC) [23]

When no information about the parameters is provided above, the classifiers
were applied with their defaults parameters in scikit-learn1.

The classifiers investigated cover the methods most commonly applied to BCI
implementations [15]. Some of these classifiers consider interactions between the
features, some others incorporate regularization techniques, or take into account
similarity metrics between the data.

5 Results

The goal of our experiments were: 1) Evaluate the performance of the classifiers
across subjects and tasks when all the information is used. 2) Determine how
the choice of the CSP component impacts the classification accuracy.

5.1 Comparison between the classifiers

We applied the ten classification methods to the set of 512 features. Classifiers
were learned using the training data from which the CSPs had been extracted
and evaluated on test data. 30 repetitions of the learning process were run. In
each repetition, one classifier was learned using 29 of the 30 epochs, for each of

1 See http://scikit-learn.org/stable/index.html for more details on the code.
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the two tasks involved in the binary classification process (e.g., vowel /a/ versus
/u/). This is a framework similar to leave-one-out cross-validation but instead of
evaluating the classifiers in the fold left out, they were all evaluated in the test
data that comprises 20 epochs. Notice that the application of the standard leave-
one-out cross-validation method would have implied learning different CSPs in
each of the repetitions. By dividing the cases in two groups, train and test, we
compute the CSPs using the complete set of training data only once. We can
still compute estimates on the accuracies because each classifier is learned with
a different subset of the training data.

Mean and standard deviation of the accuracy of the classifiers on the test
data were computed and are shown in Table 1. This table also includes results
using a non-linear SVM [26] as presented in [7]. For SVM, only 20 repetitions
in two groups were applied. Therefore, these results are included here just as a
reference.

In Table 1, the best accuracy for each combination of pairs of tasks and
subjects is highlighted in bold. It can be seen from the table that there is a clear
split in the behavior of the algorithms among the subjects. GNB is the best
algorithm for subject S1, reaching accuracies over 89% for all tasks. For subject
S2, RDT clearly achieves the best accuracies, and for subject S3, RDT and RF
exhibit the same behavior for task F1, while GNB obtains the best accuracies
for tasks F2 and F3. SVM results are clearly improved for subjects S1 and S2
and slightly outperformed for subject S3.

A multiple comparison test using the Tukey’s honestly significant difference
criterion was applied to the classification results to look for significant differ-
ences between algorithms. The output of 30 classifiers was used to assess for
these differences. Results are summarized in Table 2 where cell (r, c) indicates
the number of times algorithm c was significantly better than algorithm r in
the 9 possible combinations. For instance, cell (1, 4) indicates that Ll1 achieved
significant better results than KNN in 2 scenarios. Cell (4, 1) indicates that KNN
was better than Ll1 in 4 of 9 scenarios. In the remaining 3 scenarios there were
not significant differences in the behavior of these two algorithms.

The last row in Table 2 shows the number of times each algorithm was
outperformed by the others (o−). The last column shows the number of times
each algorithm outperforms the rest (o+). The algorithms that showed a clear
difference between o+ and o− were: RF (22), GNB (20), and RDT (12).

5.2 Influence of the CSP components

In the second part of the experiments, the classifiers were applied to the 128
features associated to each of the 4 CSPs. The goal of the experiment was two-
fold: to evaluate the ability of the classifiers to use partial information about the
brain signals, and to determine if the classifiers’ performance, and consequently
the ranking between the algorithms, held for the four groups of variables.

Table 3 shows the best absolute classification accuracies obtained by the
algorithms across the four groups. Cells in bold indicate situations where the
classification accuracies achieved by one of the sets of features associated to any
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S/F Logistic l1 Gaussian Naive Bayes Randomized decision tree
F1 F2 F3 F1 F2 F3 F1 F2 F3

S1 72± 3 83± 2 68± 3 90± 1 92± 1 92± 0 87± 2 95± 2 84± 3
S2 62± 3 67± 2 57± 3 78± 2 64± 2 59± 1 79± 4 78± 4 71± 4
S3 57± 3 65± 2 55± 4 62± 2 80± 1 62± 2 68± 4 75± 3 57± 4

Logistic l2 Gradient boosting Nearest centroid classifier
F1 F2 F3 F1 F2 F3 F1 F2 F3

S1 68± 3 83± 2 61± 3 66± 6 82± 6 64± 6 82± 1 88± 2 64± 2
S2 74± 2 67± 2 57± 3 64± 3 68± 5 70± 5 66± 2 63± 4 59± 2
S3 57± 3 64± 1 57± 3 61± 6 69± 5 50± 4 59± 1 66± 1 52± 3

LDA Random forest SVM
F1 F2 F3 F1 F2 F3 F1 F2 F3

S1 72± 3 79± 4 66± 3 87± 3 96± 2 81± 4 79± 3 82± 4 72± 3
S2 65± 4 65± 4 60± 4 75± 3 74± 5 70± 5 71± 5 72± 4 60± 5
S3 57± 3 65± 3 47± 3 68± 4 77± 3 59± 6 67± 4 80± 3 56± 4

KNN Decision tree
F1 F2 F3 F1 F2 F3

S1 77± 2 87± 1 77± 2 67± 4 84± 5 62± 6
S2 61± 2 66± 1 64± 1 63± 4 66± 6 69± 5
S3 67± 2 71± 1 58± 2 61± 6 68± 4 50± 4

Table 1. Mean and standard deviation of the classification accuracies obtained by the
classifiers on the test data. Classifiers use the 512 features corresponding to the four
CSP.

of the four CSPs improved the accuracy obtained by the same classifier for the
complete set of features (corresponding cell in Table 1). For all classifiers, there
are situations where a subset of the variables improves the accuracies achieved
using all the features. Furthermore, in 2 out the 9 cases, corresponding to pairs
(S3,F3) and (S3,F1), the best accuracy results were obtained using only a subset
of the features.

Classifiers Ll1 Ll2 LDA KNN GNB GB RF DT RDT NCC Tot.
Logistic l1 0 5 5 2 1 3 0 3 0 3 22
Logistic l2 3 0 4 2 1 3 0 4 1 3 21

LDA 4 5 0 1 2 3 0 3 0 3 21
KNN 4 2 2 0 3 6 0 6 2 6 31

Gaussian Naive Bayes 1 2 0 2 0 7 5 7 4 7 35
Gradient boosting 4 3 5 3 0 0 1 7 0 5 28
Random forest 1 2 0 5 2 1 0 8 5 9 33

Decision tree 4 2 5 3 1 2 1 0 0 4 22
Randomized decision tree 1 1 0 2 3 2 4 2 0 9 24

Nearest centroid classifier 4 5 4 2 2 3 0 4 0 0 24
Total 26 27 25 22 15 30 11 44 12 49 0

Table 2. Results of the statistical test on the difference between the performance of
the classifiers. Cell (r, c) indicates the number of times algorithm c was significantly
better than algorithm r in the 9 possible combinations of tasks and subjects.

Figure 1 focuses on the 3 classifiers that produce the highest accuracies:
GNB, RF, and RDT which are respectively represented in the figure by their
index in Table 2 (i.e., 5, 7, and 9). For these classifiers, the figure shows the
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accuracies obtained using the features associated to each of the four CSPs. It
can be appreciated in the figure how accuracies are highly influenced by the
CSPs. For instance, best accuracies for the pair (F1,S1) are obtained by all
classifiers by the third CSP. However, for the pair (F2,S1), the best accuracies
are achieved using the fourth CSP.

Classifiers
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Fig. 1. Classification accuracies obtained by GNB, RF, and RDT using features asso-
ciated to each of the four CSP for all pairs of tasks and subjects.

5.3 Discussion

The analysis of the experiments reveals that tasks can be optimally solved for
different subjects using different classifiers. This is particularly evident when
observing the behavior of GNB for subject S1, and of RDT for subject S2. The
relevant point here is that classification algorithms may be able to capture differ-
ent mechanisms related to the vowel imagery decoding. However, it is clear that
there is only a small number of classifiers that achieve good results as the statis-
tical tests show. Therefore, it makes sense to split the search for classifiers into
two phases. A screening phase in which classifiers are evaluated in the training
data and a second phase where the best classifiers found for the combinations of
tasks and subjects are applied to test data.

The fact that some problems are better solved using only a subset of variables
associated to a single CSP indicates that also for imagery classification problems



858 Roberto Santana

feature subset selection is critical. Our analysis suggests that separating the
features according to the CSP and evaluating the accuracy of each subset of
features separately can provide a natural way to diminish the cost of the feature
subset selection process. It is also clear that using all the features does not always
produces the best accuracies. However, regularized classifiers were not among the
best contenders for any of the classification tasks.

S/F Logistic l1 Gaussian Naive Bayes Randomized decision tree
F1 F2 F3 F1 F2 F3 F1 F2 F3

S1 69± 3 82± 2 66± 3 87± 0 87± 0 73± 2 87± 2 88± 2 72± 3
S2 62± 2 65± 3 56± 3 78± 1 75± 1 73± 2 76± 3 74± 4 71± 4
S3 50± 4 72± 2 56± 3 70± 1 79± 2 66± 1 71± 4 75± 3 61± 3

Logistic l2 Gradient boosting Nearest centroid classifier
F1 F2 F3 F1 F2 F3 F1 F2 F3

S1 76± 1 77± 1 64± 2 75± 5 76± 3 63± 3 85± 1 81± 1 61± 3
S2 60± 3 63± 2 55± 2 70± 5 70± 4 59± 6 68± 1 64± 2 58± 2
S3 61± 3 68± 2 59± 3 60± 8 71± 6 61± 3 58± 2 72± 1 65± 3

LDA Random forest
F1 F2 F3 F1 F2 F3

S1 59± 7 61± 8 53± 9 83± 3 86± 2 73± 3
S2 54± 4 60± 5 59± 4 73± 3 74± 2 65± 4
S3 60± 7 56± 8 50± 6 71± 5 71± 3 60± 3

KNN Decision tree
F1 F2 F3 F1 F2 F3

S1 77± 0 82± 1 65± 0 73± 6 72± 4 61± 3
S2 61± 2 69± 2 71± 1 69± 5 66± 5 59± 7
S3 69± 2 70± 1 64± 1 60± 5 69± 5 60± 3

Table 3. Mean and standard deviation of the classification accuracies obtained by
the classifiers on the test data. Each cell shows the best accuracy among the four
classifiers corresponding to the four CSP. Accuracies in bold are equal or better than
those achieved by the same type of classifiers using the 512 features.

6 Conclusions

In this paper we have conducted an exhaustive investigation of the performance
of classification algorithms for a speech imagery decoding problem. We have
shown that previously obtained results [7] can be improved for all tasks and
subjects. Our empirical results reveal that simpler classifiers like Gaussian naive
Bayes that do not consider dependencies between the features can outperform
the results obtained with SVM and with other more complex classifiers. How-
ever, for one of the subjects, complex classifiers, able to represent dependen-
cies, outperformed all other methods. The fact that classifiers can critically vary
their performance accross subjects and tasks involved in vowel imagery decoding
seems to indicate that the classifiers can exploit different mental mechanisms.
One possible lesson from this is that the behavior of the classifiers could be used
to group subjects with similar underlying mechanism and that, when possible,
different classifiers should be tried for the tasks and subjects involved. This will
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not only help to improve the classification results but to better understand how
the variability of the speech imagery process is manifested among the subjects.

The other question investigated in this paper is to what extent the choice
of the CSP influences the accuracies of the classifiers for the different tasks
included in the study. We have shown that the combination of features derived
for the four most important CSP can decrease, in certain cases, the accuracies
achieved by using all the features. Furthermore, we have shown that any of the
four CSPs (corresponding to the two first and two last eigenvalues) does not
always produce the most discriminative sets of features for all combinations of
tasks and subjects.

There are a number of ways the results presented in this paper could be
extended. One necessary step is to evaluate the behavior of multi-class classifiers
to solve the more challenging 3-state classifcation problem. However, a potential
obstacle is that the traditional CSP algorithm is only of application to the binary
classification problem. Some CSP extensions to multiclass problems have been
proposed [9], however some of these extensions are more costly and it is not
clear how the integration with the classification algorithms should be conducted.
As another possible development, results presented in this paper could be also
applied to design ensembles of classifiers that combine the output of the binary
classifiers. Finally, a contrastive analysis of the relevant features found by the
different classifiers for each task could help to unveil the potential mechanisms
involved in the mental imagery tasks. For instance, one of the questions that
the classifiers could help to answer is in which situations classification of EEG
signals can be be accurately decoded because of the imagined speech muscle
movements or the imagined speech itself [3]

Acknowledgment

This work has been partially supported by IT-609-13 program (Basque Govern-
ment) and the TIN2013-41272P (Spanish Ministry of Science and Innovation)
project.

References

1. D. Aha, D. Kibler, and M. Albert. Instance-based learning algorithms. Machine
learning, 6(1):37–66, 1991.

2. L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

3. K. Brigham and B. V. K. V. Kumar. Imagined speech classification with EEG sig-
nals for silent communication: a preliminary investigation into synthetic telepathy.
In Bioinformatics and Biomedical Engineering (iCBBE), 2010 4th International
Conference on, pages 1–4. IEEE, 2010.

4. J. S. Brumberg, F. H. Guenther, and P. R. Kennedy. An auditory output brain–
computer interface for speech communication. In Brain-Computer Interface Re-
search, pages 7–14. Springer, 2013.



860 Roberto Santana

5. J. S. Brumberg, E. J. Wright, D. S. Andreasen, F. H. Guenther, and P. R. Kennedy.
Classification of intended phoneme production from chronic intracortical microelec-
trode recordings in speech-motor cortex. Frontiers in neuroscience, 5:65, 2011.

6. X. Chi, J. B. H. D. Schoonover, and M. D’Zmura. EEG-based discrimination
of imagined speech phonemes. International Journal of Bioelectromagnetism,
13(4):201–206, 2011.

7. C. S. DaSalla, H. Kambara, M. Sato, and Y. Koike. Single-trial classifica-
tion of vowel speech imagery using common spatial patterns. Neural Networks,
22(9):1334–1339, 2009.

8. S. Deng, R. Srinivasan, T. Lappas, and M. D’Zmura. EEG classification of imagined
syllable rhythm using Hilbert spectrum methods. Journal of neural engineering,
7(4):046006, 2010.

9. G. Dornhege, B. Blankertz, G. Curio, and K.-R. Müller. Increase information
transfer rates in BCI by CSP extension to multi-class. In Advances in Neural
Information Processing Systems, pages 733–740, 2004.

10. M. DZmura, S. Deng, T. Lappas, S. Thorpe, and R. Srinivasan. Toward EEG
sensing of imagined speech. In Human-Computer Interaction. New Trends, pages
40–48. Springer, 2009.

11. R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals
of eugenics, 7(2):179–188, 1936.

12. J. H. Friedman. Greedy function approximation: a gradient boosting machine.
Annals of Statistics, 29(5):1189–1232, 2001.

13. P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees. Machine
learning, 63(1):3–42, 2006.

14. N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen,
C. C. Tung, and H. H. Liu. The empirical mode decomposition and the Hilbert
spectrum for nonlinear and non-stationary time series analysis. Proceedings of
the Royal Society of London. Series A: Mathematical, Physical and Engineering
Sciences, 454(1971):903–995, 1998.

15. F. Lotte, M. Congedo, A. Lecuyer, F. Lamarche, and B. Arnaldi. A review of clas-
sification algorithms for EEG-based brain–computer interfaces. Journal of Neural
Engineering, 4:R1–R13, 2007.

16. D. M. McCorry. Using Statistical Classification Algorithms to Decode Covert Speech
States with Functional Magnetic Resonance Imaging. PhD thesis, George Mason
University, 2010.

17. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. Scikit-learn: Machine
learning in Python. The Journal of Machine Learning Research, 12:2825–2830,
2011.

18. X. Pei, D. L. Barbour, E. C. Leuthardt, and G. Schalk. Decoding vowels and
consonants in spoken and imagined words using electrocorticographic signals in
humans. Journal of neural engineering, 8(4):046028, 2011.

19. A. Porbadnigk, M. Wester, J.-P. Calliess, and T. Schultz. EEG-based speech recog-
nition impact of temporal effects. In Proceedings of the 2nd International Con-
ference on Bio-inspired Systems and Signal Processing (Biosignals 2009), pages
376–381, Porto, Portugal, 2009. INSTICC Press.

20. H. Ramoser, J. Muller-Gerking, and G. Pfurtscheller. Optimal spatial filtering
of single trial EEG during imagined hand movement. Rehabilitation Engineering,
IEEE Transactions on, 8(4):441–446, 2000.



Actas de la XVI Conferencia CAEPIA, Albacete Nov 2015 861

21. R. Santana, L. Bonnet, J. Légeny, and A. Lécuyer. Introducing the use of model-
based evolutionary algorithms for EEG-based motor imagery classification. In Pro-
ceedings of the 2012 Genetic and Evolutionary Computation Conference GECCO-
2012, pages 1159–1166, Philadelphia, US, 2012. ACM Press.

22. R. Santana, S. Muelas, A. Latorre, and J. M. Peña. A direct optimization ap-
proach to the P300 speller. In Proceedings of the 2011 Genetic and Evolutionary
Computation Conference GECCO-2011, pages 1747–1754, Dublin, Ireland, 2011.

23. R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu. Diagnosis of multiple can-
cer types by shrunken centroids of gene expression. Proceedings of the National
Academy of Sciences, 99(10):6567–6572, 2002.
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25. A. A. Torres-Garćıa, A. C. Reyes-Garćıa, and L. Villaseñor-Pineda. Toward a silent
speech interface based on unspoken speech. In Proceedings of the International
Conference on Bio-inspired Systems and Signal Processing (Biosignals 2012), pages
370–373. SciTePress, 2012.

26. V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag New York
Inc, 2000.

27. H.-F. Yu, F.-L. Huang, and C.-J. Lin. Dual coordinate descent methods for logistic
regression and maximum entropy models. Machine Learning, 85(1-2):41–75, 2011.

28. W.-L. Zheng, R. Santana, and B.-L. Lu. Comparison of classification methods for
EEG-based emotion recognition. In Proceedings of the 2015 World Congress on
Medical Physics and Biomedical Engineering, pages 1184–1187. Springer, 2015.


