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Abstract. This work is devoted to a fuzzy extension of the notion of
functional dependency that is defined over datatables with fuzzy val-
ues and based on similarity relations. Specifically, we propose the first
method to calculate direct-optimal bases for fuzzy functional dependen-
cies over fuzzy attribute tables and domains with similarity relations.

1 Introduction

Functional dependency (FD) is a well known concept in the database area. The
importance of this notion must be found in the normalization theory, the core
of the relational model [5]. In [8], we introduced a logic for the management of
functional dependencies, named Simplification Logic (SL

FD
), which constitutes

a solid alternative to Armstrong’s Axioms. The main novelty of SLFD is that
it is strongly based on the Simplification Rule, which allows us to narrow the
implications by removing attributes. This new axiomatic system has provided the
definition of true automated deduction methods to solve functional dependency
problems [14].

Fuzzy Set Theory has provided a generalization of the relational model in
order to incorporate to the data some degree of uncertainty, vagueness, truthlike-
ness, incompleteness and imprecision. In [2, 17–19], the authors have presented
some extensions of the relational model, several definitions of FFDs and complete
axiomatic systems to reason with them. Nevertheless, these axiomatic systems
are not designed to build automated methods to make inference with fuzzy func-
tional dependencies. Besides that, there are two dimensions to categorize [11] the
wide range of FFD definitions: the way in which vagueness is incorporated to
the data and level of fuzzification of the functional dependency.

In [6, 7] we have introduced two definitions of FFD together with the corre-
sponding sound and complete axiomatic systems and their automated reasoning
methods. Both definitions incorporate different levels of fuzzification of the de-
pendency while data remain crisp. In [11], we establish this classification and
introduce a general FFD definition. In the relational model, the atomic element
is the attribute value. Our approach associates a degree to each value of the
attribute, providing the maximum level of uncertainty in tables. A sound and
complete axiomatic system for these dependencies is also introduced in [11] and
an automated reasoning method for this approach is introduced in [16]. Once the
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automated reasoning method has been provided, the notion of normal forms be-
comes to be the spotlight. It would be interesting a definition of a normal form
for FFD that ensures an smaller cost for the reasoning methods considering
some minimality criteria. For the classical case (crisp functional dependencies or
attribute implications) different answers have been provided, depending of the
notion of minimality and also depending of the environment where the impli-
cation notion is used [12, 13]. K. Bertet and B. Monjardet, in [4], established
the equivalence of five definitions presented by different authors in several areas
which correspond with the same notion of basis. Other well-known property used
to define another kind of bases is directness, i.e., a single traversal of the impli-
cational system is enough to compute the closure of a given set of attributes. A
basis fulfilling this property is named direct basis. This property is usually ac-
companied by some minimality criteria. We are particularly interested in those
ones with minimum size (number of attributes). In [4] a method to calculate the
direct-optimal basis for classical attribute implications is introduced.

In this work, we show the notion of fuzzy attribute table and the fuzzy ex-
tension of the notion of functional dependency based on similarities in Section 3.
Section 4 focusses on the Fuzzy Simplification Logic (FSL) introduced in [11].
Then, in Section 5, the necessity of a kind of normal form (named direct optimal
basis) is justified in order to improve de efficiency of the automated reasoning
method. Finally, in Section 6, a method to compute direct optimal basis.

2 Preliminaries

We assume that basic notions related to Fuzzy Logic are known. In this frame-
work, it is usual to replace the truthfulness value set {0, 1} (false and true) by
the interval [0, 1] (truth degrees) enriched with some operations. Our approach
uses the unit interval [0, 1], the infimum (denoted by ∧) as the universal quan-
tifier, the supremun (denoted by ∨) as the existential quantifier, an arbitrary
left-continuous t-norm (denoted by ⊗) as the conjunction and the residuum de-
fined by a→ b = sup{x ∈ [0, 1] | x⊗ a ≤ b}. That is, the system of truth values
is the residuated complete lattice ([0, 1],∨,∧, 0, 1,⊗,→) where ([0, 1],⊗, 1) is a
commutative monoid and (⊗,→) is an adjoin pair (a ⊗ b ≤ c iff a ≤ b → c).
We also use fuzzy sets in the standard way. Thus, for instance, the union of two
fuzzy sets A,B ∈ [0, 1]Ω is the fuzzy set such that (A ∪ B)(x) = A(x) ∨ B(x).
Since we work with fuzzy sets with finite support, we denote each fuzzy set A
by its graph {(x,A(x)) | x ∈ Ω,A(x) > 0}.

On the other hand, we show the basic concepts of the Relational Model, with
emphasis on functional dependencies. Given a family of sets {Da | a ∈ Ω}, named
domains, indexed in a finite non-empty set Ω of elements, named attributes, a
relation is a subset of the cartesian product of the domains R ⊆ D =

∏
a∈Ω Da.

The elements in this product t = (ta)a∈Ω ∈ D will be named tuples.
Now, some issues concerning the database notation are summarized: Given

A,B ⊆ Ω, AB denotes A ∪ B and DA denotes
∏
a∈ADa. Let t ∈ R be a tuple,

then t/A denotes the projection of t to DA: if t = (ta)a∈Ω then t/A = (ta)a∈A.
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Definition 1. A formula A 7→B, where A,B ⊆ Ω, is named a functional depen-
dency (FD). A relation R ⊆ D is said to satisfy A 7→B if, for all tuples t1, t2 ∈ R,
t1/A = t2/A implies that t1/B = t2/B.

3 Fuzzy Attributes Tables and FFDs

In the literature, some very similar definitions of fuzzy functional dependency
have been proposed [1, 15, 17–19]. The first step in order to fuzzify the model is
considering similarity relations instead of the equality. Thus, each domain Da

is provided with a similarity relation ρa : Da ×Da → [0, 1], that is, a reflexive
(ρa(x, x) = 1 for all x ∈ Da) and symmetric (ρa(x, y) = ρa(y, x) for all x, y ∈ Da)
fuzzy relation. Given A ⊆ Ω, the extension to the set D is the following: for all
t, t′ ∈ D, ρA(t, t′) =

∧
a∈A ρa(ta, t

′
a). A suitable definition of fuzzy functional

dependency based on these similarities is the following [10]: A fuzzy functional

dependency (FFD) is an expression A
ϑ−−→B where A,B ⊆ Ω and ϑ ∈ [0, 1] and

we say that the FFD hols in a relation R ⊆ D if,

ϑ ≤
∧

t,t′∈R
ρA(t, t′)→ ρB(t, t′) (1)

However, although similarities are used in the definition of functional depen-
dency, the table definition remains classical. The same occurs in most of the
fuzzy extensions of the functional dependency in the literature [15,18,19].

Since the value of each attribute is the atomic element in the classical re-
lational model, if we would like to introduce uncertainty at the ground level,
the values assigned to each attribute in each tuple have to be capable to be
fuzzified. Thus, we propose to introduce a rank associated to each value which
indicates the truthfulness degree of the value of this attribute in this tuple. This
extension of the classical relational table is named Fuzzy Attributes Tables and
constitutes a generalization of other fuzzy data tables appeared in the litera-
ture [15, 18, 19]. That is, for each tuple t = (ta)a∈Ω ∈ D, we consider a map
R : D → [0, 1]Ω or, equivalently R : D × Ω → [0, 1], which renders a tuple of
truth values R(t) = (ra)a∈A.

For each tuple t, ta denotes the value of the attribute a in the tuple t and
R(t)(a) is the truthfulness of the value ta. We would like to remark that, it is
possible that R(t)(a) = 0 for all attribute a ∈ Ω.

When we work with Fuzzy Attributes Tables, we also consider similarity
relations in domains in the same way as previous works [6,9,10]. Fuzzy Attributes
Table is an extension of the original table in the classical relational model by
adding the degree of certainty to the values of each attribute.

Example 1. We consider a table to store some patients with a mark from infec-
tion in their skin. The table is built with the set of attributes A = {n, a, p, c, l}
where n represent the name, a the age, p the percent of extension in the skin, c
the mark color, l the localization in the skin.
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The domain of the attributes are Dn = {John,Peter,Ann,Dave,Peter},
Da = {n ∈ N | 0 ≤ n ≤ 120}, Dp = {n ∈ N | 0 ≤ n ≤ 100}, Dc = {
Black, Brown, Purple, Red, Yellow } and Dl = {Arm, Face, Foot, Hand, Leg}.
We build the similarity relations in each domain Da as follows:

ρc b w p r y ρl a f o h l

b 1 0.7 0.4 0.3 0.1 a 1 0.2 0.4 0.9 0.4
w 0.7 1 0.5 0.4 0.2 f 0.2 1 0.2 0.2 0.2
p 0.4 0.5 1 0.8 0.2 o 0.4 0.2 1 0.6 0.8

r 0.3 0.4 0.8 1 0.1 h 0.9 0.2 0.6 1 0.3
y 0.1 0.2 0.2 0.1 1 l 0.4 0.2 0.8 0.3 1

ρn(tn, t
′
n) =

{
1 if tn = t′n
0 if tn 6= t′n

ρa(ta, t
′
a) = 1− |ta−t′a|

maxa−mina
ρp(tp, t

′
p) = 1− |tp−t

′
p|

100

And finally, we consider the following Fuzzy Attributes Table.

name age percent colour localization

Ann/1 26/0.9 2/0.8 Brown/0.8 Hand/0.8
Albert/1 33/0.7 4/0.7 Black/0.6 Leg/0.9
Mary/1 21/0.6 7/0.6 Purple/0.9 Arm/0.9
Dave/1 43/0.4 4/0.9 Yellow/0.8 Foot/0.8
Peter/1 24/0.1 3/0.7 Brown/0.7 Arm/0.6

The information represented corresponds to patient’s names and the description
of their infection. Note that the name attribute is crisp, as a particular case.

The next step to provide a notion of Fuzzy attribute table over domains with
similarity relations is to relate the similarity degree between two values of an
attribute (in two tuples) with their truthfulness degree.

Definition 2. Thus, let R be a fuzzy attributes table and let t, t′ ∈ R two tuples,
for all a ∈ Ω, the relative similarity degree is defined as

ρR
a (t, t′) = (R(t)(a)⊗R(t′)(a))→ ρa(ta, t

′
a)

The above definition may be generalized to subsets of attributes A ⊆ Ω as usual,
that is, ρR

A(t, t′) =
∧
a∈A ρ

R
a (t, t′)

The definition of the relative similarity relation presented in Definition 2 may
be used in Equation (1) so that the definition of fuzzy functional dependency
remains with no change.

Definition 3. A fuzzy functional dependency is an expression A
ϑ−−→B where

A,B ⊆ Ω, A 6= ∅ and ϑ ∈ [0, 1]. A Fuzzy Attributes Table R is said to satisfy

A
ϑ−−→B if the following condition holds:

ϑ ≤
∧
t,t′∈D

ρR

A(t, t′)→ ρR

B(t, t′))

Example 2. The Fuzzy Attributes Table given in Example 1 is a model of the

fuzzy functional dependency colour, percent
0.6−−−→localization for the  Lukasiewicz

t-norm (a⊗ b = max{0, a+ b−1}) and its residuum (a→ b = min{1−a+ b, 1}).
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4 Fuzzy Simplification Logic

Fuzzy Simplification Logic (FSL) is a Pavelka style fuzzy logic for reasoning
about FFDs defined over fuzzy attribute tables. Some complete axiomatic system
over several kind of FFDs have been defined [2,18,19]. However, like in the case
of classical FDs and Armstrong’s Axioms, these fuzzy inference systems are not
oriented to develop automated methods to manipulate FFDs. A logic for the
management of FFDs over fuzzy attribute tables, named FSL, was introduced
in [11]. In the axiomatic system of this logic, the transitivity role is played by a
novel rule, named simplification rule, which leads to define automated reasoning
methods. In this section, FSL is introduced. Its language is the following:

Definition 4. Given a finite set of attribute symbols Ω, we define the language

L = {A ϑ−−→B | ϑ ∈ [0, 1] and A,B ∈ 2Ω}

Concerning the semantic, the models are given by a fuzzy attribute table R : D→
[0, 1]Ω over a family of domains {(Da, ρa) | a ∈ Ω}. We say that R |= A

ϑ−−→B if

R satisfies A
ϑ−−→B, R |= Γ means that R satisfies every FFD in the set Γ and

Γ |= A
ϑ−−→B denotes that R |= Γ implies R |= A

ϑ−−→B.

Definition 5. The axiomatic system for FSL has one axiom scheme and three
inference rules:

[Ax] Reflexive Axioms: ` A 1−→ A

[InR] Inclusion Rule: A
ϑ1−−→B ` A ϑ2−−→B′

when ϑ2 ≤ ϑ1 and B′ ⊆ B.

[CoR] Composition Rule: A
ϑ1−−→B, C ϑ2−−→D ` AC ϑ1∧ϑ2−−−−−−→BD

[SiR] Simplification Rule: A
ϑ1−−→B, C ϑ2−−→D ` C-B

ϑ1⊗ϑ2−−−−−−→D-B
when A ⊆ C and A ∩B = ∅.

The next definition presents the well known notions of syntactic inference (`)
and equivalence (≡).

Definition 6. Let Γ, Γ ′ ⊆L and ϕ ∈L. We say that ϕ is (syntactically) inferred
from Γ , denoted Γ ` ϕ, if there exist ϕ1 . . . ϕn ∈ L such that ϕn = ϕ and, for all
1 ≤ i ≤ n, we have that ϕi belongs to Γ , is an axiom or is obtained by applying
the inference rules to formulas in {ϕj | 1 ≤ j < i}.
Γ and Γ ′ are said to be equivalent, denoted Γ ≡ Γ ′, if Γ ` ϕ′, for all ϕ′ ∈ Γ ′,
and Γ ′ ` ϕ, for all ϕ ∈ Γ .

Theorem 1 ( [11]). The axiomatic system of FSL is sound and complete.

5 Closures and direct bases of FFDs

In [16], we propose an automated reasoning method to decide if a formula

A
ϑ−−→B can be derived from a theory Γ (a set of fuzzy functional dependen-

cies). That is, an automated algorithm to compute the membership function for
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the closure of Γ defined as follows:

Γ+ = {A ϑ−−→B | Γ ` A ϑ−−→B} (2)

Notice that, as a consequence of [InR], Γ+ assigns an infinite set of pairs (B, ϑ)
to every set A. If the set B is also fixed then Γ+ gives an interval (consequence
of [InR]) whose supremum will be denoted as ϑ+

A,B

ϑ+
A,B

= sup{ϑ ∈ [0, 1] | A ϑ−−→B ∈ Γ+} (3)

On the other hand, if we fix the value of ϑ then a subset of 2Ω is obtained. This
set is finite and, by [InR] and [CoR], is an ideal of (2Ω ,⊆). The maximum element
of this ideal will be denoted by A+

ϑ .

A+
ϑ = max{B ⊆ Ω | A ϑ−−→B ∈ Γ+} (4)

And finally, for each attribute set A, the closure of A is defined as the fuzzy set

A+ ∈ [0, 1]Ω with A(x) = ϑ+
A,{x}

(5)

Note that the closure of a (crisp) set of attributes is a fuzzy set in [0, 1]Ω and
A+
ϑ = Cutϑ(A+) = {x ∈ Ω | A+(x) ≥ ϑ}. The following proposition is straight-

forward from definition and relates these sets.

Proposition 1. Let Γ be a set of fuzzy functional dependencies, A,B ⊆ Ω and
ϑ ∈ (0, 1]. Then

Γ ` A ϑ−−→B if and only if ϑ ≤ ϑ+
A,B

if and only if B ⊆ A+
ϑ

Thus, the method for solving the implication problem (i.e. for checking if Γ `
A

ϑ−−→B) is strongly based on the computation of A+. Algorithm 1 computes
these closures.

Algorithm 1: Closure Algorithm

Data: Γ, A
Result: A+

X := {(x, 1) | x ∈ A};
/* X will be the closure of A, which is a fuzzy set. */

repeat
Xold := X; Σ := ∅;

foreach B
ϑ−−→C ∈ Γ do

if there exists b ∈ B with b 6= a for all (a, κ) ∈ X then η := 0;
else η := min{κ | (b, κ) ∈ X with b ∈ B};
if η ⊗ ϑ 6= 0 then X := X ∪ {(c, η ⊗ ϑ) | c ∈ C};
if η 6= 1 and C 6⊆ Cutϑ(X) then

Σ := Σ ∪ {B r Cut1(X)
ϑ−−→C r Cutϑ(X)}

Γ := Σ;

until X = Xold;
return “A+ is ” X
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Example 3. In this example abc+ are going to be computed from the set

Γ = {cd 0.6−−−→e, ac 0.7−−−→def, f 0.5−−−→dg, de 0.9−−−→ch, dh 0.4−−−→a}

by considering the  Lukasiweicz product. The initial set X is {(a, 1), (b, 1), (c, 1)}
and the sketch of the trace of Algorithm 1 is depicted in Table 1. The output is

abc+ = {(a, 1), (b, 1), (c, 1), (d, 0.7), (e, 0.7), (f, 0.7), (g, 0.2), (h, 0.6)}

B
ϑ−−−→C ∈ Γ Σ X

Γ = {cd 0.6−−−−→e, ac 0.7−−−−→def, f 0.5−−−−→dg, de 0.9−−−−→ch, dh 0.4−−−−→a}
∅ {(a, 1), (b, 1), (c, 1)}

cd
0.6−−−−→e {d 0.6−−−−→e} {(a, 1), (b, 1), (c, 1)}

ac
0.7−−−−→def {d 0.6−−−−→e} {(a, 1), (b, 1), (c, 1), (d, 0.7), (e, 0.7), (f, 0.7)}

f
0.5−−−−→dg {d 0.6−−−−→e, f 0.5−−−−→g} {(a, 1), (b, 1), (c, 1), (d, 0.7), (e, 0.7), (f, 0.7), (g, 0.2)}

de
0.9−−−−→ch {d 0.6−−−−→e, f 0.5−−−−→g} {(a, 1), (b, 1), (c, 1), (d, 0.7), (e, 0.7), (f, 0.7), (g, 0.2), (h, 0.6)}

dh
0.4−−−−→a {d 0.6−−−−→e, f 0.5−−−−→g} {(a, 1), (b, 1), (c, 1), (d, 0.7), (e, 0.7), (f, 0.7), (g, 0.2), (h, 0.6)}

Γ = {d 0.6−−−−→e, f 0.5−−−−→g}
∅ {(a, 1), (b, 1), (c, 1), (d, 0.7), (e, 0.7), (f, 0.7), (g, 0.2), (h, 0.6)}

d
0.6−−−−→e ∅ {(a, 1), (b, 1), (c, 1), (d, 0.7), (e, 0.7), (f, 0.7), (g, 0.2), (h, 0.6)}

f
0.5−−−−→g {f 0.5−−−−→g} {(a, 1), (b, 1), (c, 1), (d, 0.7), (e, 0.7), (f, 0.7), (g, 0.2), (h, 0.6)}

Table 1. Algorithm’s schema

Moreover, to decide, for instance, if Γ ` abc 0.5−−−→dh holds, we need to check
{d, h} ⊆ Cut0.5(abc+) = {a, b, c, d, e, f, h}. In this case the answer is affirmative.

As we have mentioned in the introduction, the aim of this work is to establish
good properties to be demanded to the set of fuzzy functional dependencies in
order to ensure the best behavior of the closure algorithm. Following the idea
introduced in [4] for classical implications, we introduce a desirable property
named directness.

Definition 7. Let Γ be a set of fuzzy functional dependencies in Ω. We say
that Γ is direct if, for each subset X ⊆ Ω,

X+ = X ∪
⋃

A
ϑ−−−→B ∈ Γ
X ⊆ A

{(b, ϑ) | b ∈ B}

And Γ is said to be a direct optimal basis if, for any direct base Γ ′, we have that
Γ ≡ Γ ′ implies ‖Γ‖ ≤ ‖Γ ′‖ where ‖Γ‖ denotes the size of Γ 1.

1 That is, ‖Γ‖ =
∑
A

ϑ−−−→B∈Γ
(|A|+ |B|) where |A| denotes the cardinality of A.
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The following theorem ensures the existence and unicity of a direct optimal basis
equivalent to each one.

Theorem 2. For any set of fuzzy functional dependencies Γ in Ω there exists
a unique direct optimal basis Γd such that Γd ≡ Γ .

The proof of the above theorem follows the same scheme as the equivalent one
provided in [4] for classical implications (crisp functional dependencies).

6 Computing direct-optimal basis

In this section, we propose the first method that calculates direct-optimal basis
for fuzzy functional dependencies over fuzzy attribute tables and domains with
similarity relations. We stress there is not exist in the literature, as far as we
know, any work for any fuzzy extension of FD considering to compute direct
optimal basis of FFDs. The method proposed here is directly based on SLFD

with the following main operations that use the operations of reduction, the
rules of simplifications, and the strong simplification rule based on the logic.

In some areas, the management of formulas is limited to unitary ones. Thus,
the use of Horn Clauses in Logic Programming is widely accepted. Such a lan-
guage restriction allows an improvement in the performance of the methods,
which are more direct and lighter.

Definition 8. Let Γ be a set of fuzzy functional dependencies in Ω. We say

that Γ is a proper unit theory if, for all A
ϑ−−→B ∈ Γ , the set B is a singleton

not included in A and ϑ > 0.

It is not difficult to conclude that there is a proper unit theory equivalent to any
set of fuzzy functional dependencies Γ :

Γu = {A ϑ−−→a | ϑ > 0, A
ϑ−−→B ∈ Γ, a ∈ B rA}

The algorithm for computing direct optimal basis, that we present here, has four
stages: First, it transform the set of FFDs in a proper unit theory; second, it
computes a direct basis by applying the following derived rule, named Strong
Simplification:

[sSiR] A
ϑ1−−→a, aB ϑ2−−→b ` AB ϑ1⊗ϑ2−−−−−−→b when a, b /∈ A ∪B.

The third step is to narrow the set of FFDs applying the following equivalence

[NarrEq] If A ⊆ C and ϑ1 ≥ ϑ2, {A ϑ1−−→b, C ϑ2−−→b} ≡ {A ϑ1−−→b}.

Finally, the method applies, when it is possible, the Composition Equivalence:

{A ϑ−−→B,A ϑ−−→C} ≡ {A ϑ−−→BC}.

Theorem 3. Let Γ be a set of fuzzy functional dependencies. Algorithm 2 ren-
ders the unique direct-optimal base equivalent to Γ .
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Algorithm 2: DirectOptimal

input : A set of fuzzy functional dependencies Γ in Ω
output: The direct-optimal basis Γdo equivalent to Γ
begin

Γu := {A ϑ−−→a | ϑ > 0, A
ϑ−−→B ∈ Γ, a ∈ B rA}

foreach A
ϑ1−−→a ∈ Γu do

foreach Ca
ϑ2−−→b ∈ Γu do

if a 6= b and b 6∈ A then add AC
ϑ1⊗ϑ2−−−−−−→b to Γu;

foreach A
ϑ1−−→b ∈ Γu do

foreach C
ϑ2−−→b ∈ Γu do

if A ⊆ C and ϑ1 ≥ ϑ2 then delete C
ϑ2−−→b from Γu;

Γdo := Γu

foreach A
ϑ1−−→B ∈ Γdo do

foreach C
ϑ2−−→D ∈ Γdo do

if A = C and ϑ1 = ϑ2 then replace A
ϑ1−−→B and C

ϑ2−−→D by

A
ϑ1−−→BD in Γdo;

return Γdo

7 Conclusions and further works

In this work, we propose the first method to calculate direct-optimal basis for
fuzzy functional dependencies over fuzzy attribute tables and domains with sim-
ilarity relations. A discussion about the cost of the algorithm and possible im-
provements for it is now under consideration. As future work, we are also going
to extend these results to a more expressive logic that we introduced in [3].
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