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2 Universidad de Málaga. Departamento de Matemática Aplicada. Spain
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Abstract. The Dedekind-MacNeille completion of a poset P can be
seen as the least complete lattice containing P . In this work, we analyze
some results concerning the use of this completion within the framework
of Formal Concept Analysis, notably the distributivity of the Dedekind-
MacNeille completion and the construction of the poset of concepts as-
sociated with a Galois connection between posets.

1 Introduction

The Dedekind-MacNeille completion of a partially ordered set P was introduced
by H.M. MacNeille in [9] as a generalization of Dedekind’s method for construct-
ing the field of the real numbers from the rational numbers. In a few words, one
can say that the Dedekind-MacNeille completion of a poset (P,≤) is the smallest
complete lattice that contains P .

This construction has already played a role in the research topic of formal
concept analysis in which, for instance, the concept lattice corresponding to the
general ordinal scale associated to a poset is precisely the Dedekind-MacNeille
completion of P , see [7]. The problem of actually constructing the completion
of a finite poset is very interesting from a practical standpoint, and it is not
surprising that several researchers have devised algorithms for constructing it.

On the other hand, multilattices are structures in which the restrictions im-
posed on a (complete) lattice, namely, the “existence of least upper (resp. great-
est lower) bounds” is weakened to “existence of minimal upper (resp. maximal
lower) bounds”. Although introduced in a theoretical framework more than fifty
years ago, they are being used as practical tools to handle uncertain informa-
tion [3, 10]. Specifically, they can be used as structures capable of describing
certain aspects of uncertainty and reasoning with incomplete information.

Precisely, it is in this respect where one finds the link between multilat-
tices and Formal Concept Analysis (FCA); specifically, related to the many ap-
proaches that can be found in papers aimed at generalizing FCA in order to
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deal with uncertainty, imprecise data, or incomplete information, which have
provided different abstract frameworks [1, 2, 8, 11, 13], ranging from residuated
lattices, to non-commutative conjunctors, and to multi-adjoint lattices. Non-
commutativity enables passing from adjoint pairs (generalization of conjunction
and implication in a residuated lattice) to adjoint triples [4]. Adjoint triples on
lattices have proven to be a useful tool when working in fuzzy formal concept
analysis. Furthermore, in [12] it was shown that they can play an important role
as well within the framework of multilattices, especially in order to form the
Galois connections needed to build concepts in a multilattice-based framework.

This paper studies a extension of the usual theory of FCA, in that we seem-
ingly assume the most general framework for the corresponding constructions.
Firstly, we aim at showing that the Dedekind-MacNeille completion behaves
adequately with respect to the FCA construction of the concepts, in that the
completion of the concept poset coincides with the concept lattice of the corre-
sponding completions of the initial posets.

2 Preliminaries

In this section we recall the preliminary definitions of multilattices, Formal Con-
cept Analysis, and Dedekind-MacNeille completion.

2.1 Multilattices

Definition 1. A complete lattice is a poset (L,≤) where every subset of L has
supremum and infimum.

When the existence of supremum (infimum) element is replaced by the exis-
tence of minimal (maximal) elements of the upper (lower) bounds of a subset, the
notion of multilattice arises. In order to formalize this definition, the following
notions are needed.

Definition 2. Let (P,≤) be a poset and K ⊆ P , we say that:

- K is called a chain if for every two elements x, y ∈ K we have that either
x ≤ y or y ≤ x.

- K is called antichain if none of its elements are comparable, i.e., for every
different x, y ∈ K we have both x � y and y � x.

Definition 3. A poset (P,≤) is called coherent if every chain has supremum
and infimum.

The definition of a multilattice is given below.

Definition 4. A complete multilattice is a coherent poset (M,≤) such that for
each subset X the set of upper (resp. lower) bounds of X has minimal (resp.
maximal) elements.

Each minimal (resp. maximal) element of the upper (resp. lower) bounds of
a subset is called multisupremum (resp. multinfimum). The set of all multi-
suprema, resp. multinfima, of X will be denoted by msup(X), resp. minf(X).
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Remark 1. Note that, by definition, the set msup(X), resp. minf(X), is never
empty. Particularly, every complete multilattice has a bottom and a top element.
Moreover, note that the two sets msup(X) and minf(X) are always antichains.

Proposition 1 ( [11]). Given a complete multilattice (M,≤), every upper (resp.
lower) bound of a subset X ⊆M is greater (resp. smaller) than at least one mul-
tisupremum (resp. multinfimum) of X.

Although the following remark can be straightforwardly obtained, we prefer
to formally state it since it will be used later.

Remark 2. Given X ⊆M , if minf(X) ∩X 6= ∅, then X has a minimum.

2.2 Closure operators and closure systems

As the concepts (that is, the basic constructions in FCA) are closed elements un-
der certain constructions, we give here the preliminary notions needed in relation
to closure operators and closure systems.

Definition 5. Given a poset (P,≤), a closure operator on P is a mapping
c : P → P which is monotone, inflationary and idempotent. Specifically, this
means the following conditions for all x, y ∈ P

1. x ≤ y implies c(x) ≤ c(y) 2. x ≤ c(x) 3. c(x) = c(c(x))

Let L be a complete lattice. A subset S ⊆ L is a closure system if for all
X ⊆ S we have that inf(X) ∈ S.

In this case, every closure operator gives rise to a closure system and vice
versa, as the following proposition shows.

Proposition 2. Let c be a closure operator on a complete lattice (L,u,t). Then
the family Sc = {x ∈ L | c(x) = x} of closed elements of L is a closure system,
and forms a complete lattice when ordered by inclusion, in which for any X ⊆ Sc

the supremum and infimum are defined by∧
X =

l
X

∨
X = c(

⊔
X).

Conversely, given a closure system S in L, then cS(x) =
d
{y ∈ S | x ≤ y}

defines a closure operator cS on L.

2.3 Galois connections and Formal Concept Analysis

The notion of Galois connection [5], which we recall here, will play as well an
important role hereafter.

Definition 6. Let ↓ : P → Q and ↑ : Q → P be two maps between the posets
(P,≤) and (Q,≤). The pair (↑, ↓) is called a Galois connection if:
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– p1 ≤ p2 implies p2
↓ ≤ p1↓, for every p1, p2 ∈ P ;

– q1 ≤ q2 implies q2
↑ ≤ q1↑, for every q1, q2 ∈ Q;

– p ≤ p↓↑ and q ≤ q↑↓, for all p ∈ P and q ∈ Q.

An interesting property of a Galois connection (↑, ↓) is that ↓ = ↓↑↓ and
↑ = ↑↓↑, where the chain of arrows means their composition.

Once we have a Galois connection, we can focus on the pairs of elements
(p, q) which are the image of each other by the application of the corresponding
arrow. These pairs can be seen as fixed points of the Galois connection, and are
usually called concepts. We formalize this notion as follows:

Definition 7. A pair (p, q) is said to be a concept of the Galois connection
(↑, ↓) if p↓ = q and q↑ = p.

The set of concepts can be ordered by defining (p1, q1) ≤ (p2, q2) if and
only if p1 ≤ p2 (or equivalently q2 ≤ q1). The resulting poset will be denoted
CP(P,Q,↑ ,↓ ). In the case that P and Q are lattices, the following result holds:

Theorem 1 (See [7]). Let (L1,≤1) and (L2,≤2) be two complete lattices and
(↑, ↓) a Galois connection between them, then we have that CP(L1, L2,

↑ ,↓ ) is a
complete lattice, and the constructions of infima and suprema are given below:

∧
i∈I

(xi, yi) =

(∧
i∈I

xi, (
∨
i∈I

yi)
↑↓

) ∨
i∈I

(xi, yi) =

(
(
∨
i∈I

xi)
↓↑,
∧
i∈I

yi

)

In this case, we will stress the fact that the set of concepts is a lattice by
writing CL(L1, L2,

↑ ,↓ ).

The following definitions introduce the notion of supremum-dense (resp.
infimum-dense) subset, and dual isomorphism, which will be useful later in re-
lation to the basic theorem of FCA for multilattices.

Definition 8. Let (L,≤) be a lattice and let Q ⊆ L, we say that the subset Q is
supremum-dense in L if for every element a ∈ L there is a subset A ⊆ Q such
that a is the supremum of A. The dual of supremum-dense is infimum-dense.

Definition 9. Let (P,≤) and (Q,≤) be two posets and ϕ a mapping from P onto
Q such that x ≤ y in P if and only if ϕ(y) ≤ ϕ(x) in Q. Then, the mapping ϕ
is called dual isomorphism.

2.4 Adjoint triples and Formal Concept Analysis

Finally, we will recall some extensions of notions about formal concept analysis
based on the so-called adjoint triples, which can be seen as operators that arise
as a generalization of a triangular norm and its residuated implication. These
operators will be considered later in Section 5.
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Definition 10. Let (P1,≤1), (P2,≤2), (P3,≤3) be posets and consider mappings

&: P1 × P2 → P3, ↙ : P3 × P2 → P1, ↖ : P3 × P1 → P2, then (&,↙,↖) is said
to be an adjoint triple with respect to P1, P2, P3, if &, ↙,↖ satisfy the adjoint
property: For all x ∈ P1, y ∈ P2, z ∈ P3

x ≤1 z ↙ y iff x& y ≤3 z iff y ≤2 z ↖ x

It is worth to recall that the conjunctor of an adjoint triple was called biresiduated
mapping in [15].

Definition 11. A frame L is a tuple (L1, L2, P,≤1,≤2,≤,&,↙,↖) where (L1,≤1)
and (L2,≤2) are complete lattices, (P,≤) is a poset and, (&,↙,↖) is an adjoint
triple with respect to L1, L2, P . These frames are denoted as (L1, L2, P,&).

Given a frame, a context is a tuple consisting of sets of objects, attributes
and a fuzzy relation among them. Formally,

Definition 12. Let (L1, L2, P,&) be a frame, a context is a tuple (A,B,R)
such that A and B are non-empty sets (interpreted as attributes and objects,
respectively) and R is a P -fuzzy relation R : A×B → P .

LA
1 and LB

2 denote the set of fuzzy subsets f : A → L1, g : B → L2, respec-
tively. From the partial orders in (L1,≤1) and (L2,≤2), a pointwise partial order
can be considered which provides LA

1 and LB
2 with the structure of complete lat-

tice. Abusing notation, (LA
1 ,≤1) and (LB

2 ,≤2) are complete lattices where ≤1

and ≤2 are defined pointwise.
Given a fixed frame and a context for that frame, the concept-forming oper-

ators ↑ : LB
2 −→ LA

1 and ↓ : LA
1 −→ LB

2 are defined, for all g ∈ LB
2 , f ∈ LA

1 and
a ∈ A, b ∈ B, as

g↑(a) = inf{R(a, b)↙ g(b) | b ∈ B} (1)

f↓(b) = inf{R(a, b)↖ f(a) | a ∈ A} (2)

These two arrows form a Galois connection [11]. Therefore, a fuzzy concept
is a pair 〈g, f〉 satisfying that g ∈ LB

2 , f ∈ LA
1 and that g↑ = f and f↓ = g; with

(↑, ↓) being the Galois connection defined above.

Definition 13. The fuzzy concept lattice associated with a fuzzy frame (L1, L2, P,&)
and a context (A,B,R) is the set

B(A,B,R) = {〈g, f〉 | g ∈ LB
2 , f ∈ LA

1 and g↑ = f, f↓ = g}

in which the ordering is defined by 〈g1, f1〉 ≤ 〈g2, f2〉 if and only if g1 ≤2 g2
(equivalently f2 ≤1 f1).

Notice that B(A,B,R) coincides with CL(LA
1 , L

B
2 ,

↑ ,↓ ) and, by Theorem 1, it is
a complete lattice.
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3 Closure systems in multilattices

This section introduces the definition of closure system in a multilattice, several
properties are proved and, finally, the characterization in terms of a closure
operator is given. A complete multilattice (M,≤) will be fixed in all this section,.

The first definition is clearly a natural generalization of a closure system.

Definition 14. A set S ⊆ M is a closure system in M , if for all5 X ⊆ S
minf(X) ⊆ S holds.

The following results relate closure operators to closure systems on a mul-
tilattice. The first one states that the set of fixed points of a closure operator
gives rise to a closure system.

Lemma 1. Let c be a closure operator on M , then the set of fixed points Sc =
{x ∈M | c(x) = x} forms a closure system in M .

The following technical lemma will be fundamental in order to define a closure
operator from a closure system.

Lemma 2. Given a closure system S ⊆ M and y ∈ M , then the set {x ∈ S |
y ≤ x} has a minimum.

Consequently, given a closure system S ⊆ M , the mapping cS : M → M ,
defined by cS(y) = min{x ∈ S | y ≤ x}, is a closure operator on M .

The previous results provide the generalization of the well-known relationship
between closure systems and closure operators.

Theorem 2. Each closure operator on M induces a closure system in M . Con-
versely, any closure system determines a closure operator.

Proposition 3. The closure operator induced by a closure system Sc is c itself,
similarly, the closure system induced by the closure operator cS is S. That is,

cSc = c and ScS = S

Proof. The equality cSc
(y) = min{x ∈ Sc | y ≤ x} = c(y) holds, since the closure

of y, c(y), is the smallest closed element greater than y.
On the other hand, ScS = S follows from the fact that y ∈ S if and only if

cS(y) = min{x ∈ S | y ≤ x} = y. ut

The next result recalls the relation between Galois connections and closure
systems in multilattices.

Proposition 4. Any Galois connection between complete multilattices induces
dually isomorphic closure systems. Conversely, each pair of dually isomorphic
closure systems S1 and S2 in complete multilattices M1 and M2 determines a
Galois connection between S1 and S2.

5 Note that the subset X can be empty.
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4 Dedekind-MacNeille completion on multilattices

After recalling the notion of Dedekind-MacNeille completion on posets, this sec-
tion introduces two technical results which will be used later. The following
definition presents the two operators used in the completion of an ordered set P .

Definition 15. Let (P,≤) be a poset and A ⊆ P , the “upper” set and the
“lower” set of A are respectively defined by

Au = {x ∈ P | a ≤ x, for all a ∈ A} and Al = {x ∈ P | x ≤ a, for all a ∈ A}

The mappings u and l on the powerset of the poset P form a Galois connec-
tion. Hence, the following properties hold, for all A,B ⊆ P ,

A ⊆ Aul and A ⊆ Alu (3)

if A ⊆ B then Bu ⊆ Au and Bl ⊆ Al (4)

Au = Aulu and Al = Alul (5)⋂
i∈I

(Ai)
u =

(⋃
i∈I

Ai

)u
, where Ai ⊆ P, for all i ∈ I (6)

⋂
i∈I

(Ai)
l =

(⋃
i∈I

Ai

)l
, where Ai ⊆ P, for all i ∈ I (7)

Considering the operators u and l, the Dedekind-MacNeille completion of a
poset (P,≤) is defined as follows:

Definition 16 ( [5]). Let (P,≤) be a poset. The Dedekind-MacNeille comple-
tion of P is the set DM(P ) = {Aul | A ⊆ P}, which forms a complete lattice
with respect to the inclusion ordering.

It is worth to note that DM(P ) forms a closure system in the powerset of P ;
consequently, infimum coincides with the intersection and supremum is the clo-
sure of the union.

The following theorem characterizes the Dedekind-MacNeille completion of
a poset (P,≤).

Theorem 3 ( [5]). Let (P,≤) be an ordered set and let ι : P ↪→ DM(P ) be the
order-embedding of P into its Dedekind-MacNeille completion given by ι(x) = xl.

(i) ι(P ) is both supremum-dense and infimum-dense in DM(P ).
(ii) Let (L,≤) be a complete lattice and assume that P is a subset of L which

is both supremum-dense and infimum-dense in L. Then L ∼= DM(P ) via an
order-isomorphism which is an extension of ι.

As a result, given a poset (P,≤), the mapping ι : P ↪→ DM(P ) above is an
order-embedding of P into DM(P ).

Another technical result, which will be useful later, is the following:
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Proposition 5 ( [14]). For all X ⊆ P the following6 equalities hold in DM(P ):∧
x∈X

xl = X l
∨
x∈X

xl = Xul

The following proposition introduces some useful equalities in the case that
our underlying poset is indeed a multilattice.

Proposition 6. For every X ⊆M , the following equalities are satisfied:

X l =
⋃

y∈minf(X)

yl and Xu =
⋃

y∈msup(X)

yu

Proof. We will prove just the first equality, the second one is similar.
First of all, we will prove that X l ⊆

⋃
y∈minf(X) y

l. By definition of mul-

tilattice we have that M is a coherent poset, then for all x ∈ X l there ex-
ists y ∈ minf(X), such that x ≤ y. From the last inequality we obtain that
x ∈ yl and, as a consequence, x ∈

⋃
y∈minf(X) y

l. Therefore, we can conclude

that X l ⊆
⋃

y∈minf(X) y
l.

It remains to prove that
⋃

y∈minf(X) y
l ⊆ X l. For that purpose, we will con-

sider z ∈
⋃

y∈minf(X) y
l, then z ∈ yl for some y ∈ minf(X), from which the

following inequalities hold z ≤ y ≤ x for all x ∈ X. Finally, we can state that
z ∈ X l and, therefore

⋃
y∈minf(X) y

l ⊆ X l. ut

As we know that all the elements in the Dedekind-MacNeille completion
of P can be expressed as infima or suprema of elements of P , the following
lemma describes how the elements in the completion of a multilattice M can be
expressed in terms of elements in M .

Lemma 3. Let (M,≤) be a complete multilattice, then for all X ⊆ M the fol-
lowing equalities in DM(M) hold:∧

x∈X

xl =
∨

y∈minf(X)

ι(y)
∨
x∈X

xl =
∧

y∈msup(X)

ι(y)

Proof. Given X ⊆ M , by Proposition 5 we have that
∧
x∈X

xl = X l. Then, the

following chain of equalities holds

∨
y∈minf(X)

ι(y)
(1)
=

 ⋃
y∈minf(X)

yl

ul

(2)
= (X l)ul = X l =

∧
x∈X

xl

where (1) is given by Proposition 2 and (2) by Proposition 6.

6 In order to simplify the notation we will write x instead of {x}.
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On the other hand, by Proposition 5 the equality
∨

x∈X xl = Xul holds.
Then, we have that

Xul (1)
=
( ⋃
y∈msupX

yu
)l (2)

=
⋂

y∈msupX

yul
(3)
=

⋂
y∈msupX

yl
(4)
=

∧
y∈msupX

ι(y)

where (1) is given by Proposition 6, the equality (2) holds since (u,l ) is a Galois
connection, (3) because yul = yl, for all y ∈M , and (4) is due to Proposition 2.

ut

5 Dedekind-MacNeille completion and FCA

As stated in the introduction, the Dedekind-MacNeille construction has already
played an important role in FCA. As an example, it can be seen as the concept
lattice associated to the general ordinal scale associated to a poset, see [7]. Sev-
eral algorithms for constructing the Dedekind-MacNeille completion of a finite
poset have been proposed, for instance, Ganter and Kuznetsov [6] introduced a
stepwise method, with cubic complexity, which constructs one new element at a
time.

Proposition 7. Let (L,≤) be a complete lattice, (P,≤) be a poset and ϕ : P →
L be an order-embedding such that ϕ(P ) is both supremum and infimum dense
in L. Then L ∼= B(P, P,≤) ∼= DM(P ).

Proof. Since (u, l) is the Galois connection given by the concept-forming opera-
tors associated with the context (P, P,≤), one easily deduces that B(P, P,≤) ∼=
DM(P ), since DM(P ) is the set of extensions of the concept lattice B(P, P,≤),
see [7, page 48].

On the other hand, due to the fact that ϕ : P → L is an order-embedding,
we have that P and ϕ(P ) are isomorphic. Moreover, from Theorem 3 we have
that L ∼= DM(ϕ(P )). As a result, we obtain the following chain of isomorphisms:

L ∼= DM(ϕ(P )) ∼= DM(P ) ∼= B(P, P,≤)

ut

Our next goal is to prove that the Dedekind-MacNeille completion “dis-
tributes” with respect to the construction of the concept lattice associated to a
Galois connection.

Let the pair of mappings ϕ : P → Q and ψ : Q → P be a Galois connec-
tion between posets. The following result states that it can be extended to the
corresponding completions.

Proposition 8 ( [15]). Any Galois connection ϕ : P → Q and ψ : Q → P
between posets, can be uniquely extended to a Galois connection between DM(P )
and DM(Q).
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This extension (ϕ̄, ψ̄) is given by

ϕ̄(Aul) =
∧
x∈A

ιQ(ϕ(x)), for all A ⊆ P and ψ̄(Bul) =
∧
y∈B

ιP (ψ(y)), for all B ⊆ Q.

From now on, in order to simplify the notation, we will erase the subscripts
from the mappings ιP and ιQ, that is, we will write ι instead of ιP or ιQ.

We can now state and prove the main result in this paper:

Theorem 4. Let (P,≤), (Q,≤) be posets and (ϕ,ψ) be a Galois connection be-
tween P and Q, the Dedekind-MacNeille completion of concept poset CP(P,Q, ϕ, ψ)
is isomorphic to the concept lattice CL(DM(P ),DM(Q), ϕ̄, ψ̄), that is

DM(CP(P,Q, ϕ, ψ)) ∼= CL(DM(P ),DM(Q), ϕ̄, ψ̄)

Proof. From Theorem 3, it is sufficient to show that CP(P,Q, ϕ, ψ) can be order-
embedded as a supremum and infimum dense subset of CL(DM(P ),DM(Q), ϕ̄, ψ̄).

Let (X,Y ) ∈ CL(DM(P ),DM(Q), ϕ̄, ψ̄) be an arbitrary element. By X ∈
DM(P ) and Proposition 5, we have that X = Xul =

∨
x∈X xl. Moreover, since

the Galois connection (ϕ̄, ψ̄) is the extension of (ϕ,ψ), we obtain

(X,Y ) =
(
ψ̄(ϕ̄(X)), ϕ̄(X)

)
=
(
ψ̄(ϕ̄(X)),

∧
x∈X

ι(ϕ(x))
)

∨
x∈X

(
ι(ψ(ϕ(x))), ι(ϕ(x)

)
) =

(
ψ̄(ϕ̄(

∨
x∈X

ι(ψ(ϕ(x))))),
∧
x∈X

ι(ϕ(x))
)

Since both are concepts of CL(DM(P ),DM(Q), ϕ̄, ψ̄) and they have the same
intension, they are the same concept and so CP(P,Q, ϕ, ψ) is supremum dense
in CL(DM(P ),DM(Q), ϕ̄, ψ̄).

The proof of infimum dense is similarly obtained. ut

6 Conclusions

After recalling the basic notions about FCA, multilattices, and the Dedekind-
MacNeille completion, we have studied the properties of the DM-completion of
a multilattice in terms of the elements of the multilattice. Moreover, we have
proved that the effect of interspersing the DM completion wrt the construction
of the concepts is, somehow, distributive.

As future work, we will keep studying the algebraic properties of multilattices
in relation to the theory of Formal Concept Analysis; in this respect, it might
be interesting considering the potential implications of the soft left-continuity
introduced in [12].
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