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Abstract. In this work, we focus on adjunctions (also named isotone
Galois connections) between fuzzy preordered sets; specifically, we study
necessary and sufficient conditions that have to be fulfilled in order such
an adjunction to exist.
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1 Introduction

Adjunctions (also called isotone Galois connection) between two mathematical
structures provide a means of linking both theories allowing for mutual cooper-
ative advantages.

A number of results can be found in the literature concerning sufficient or
necessary conditions for a Galois connection between ordered structures to exist.
The main result of this paper is related to the existence and construction of the
right adjoint to a given mapping f , but in a more general framework. It is worth
to recall that, in a fuzzy setting, reflexivity and antisymmetry are conflicting
properties [1] and, whereas some authors [4] opted for dropping reflexivity, our
choice in this case has been to ignore antisymmetry and, therefore, consider fuzzy
preorders.

Hence, our initial setting is to consider a mapping f : A → B from a fuzzy
preordered set A into an unstructured set B, and then characterize those situ-
ations in which B can be fuzzy preordered and an isotone mapping g : B → A
can be built such that the pair (f, g) is an adjunction.

A set of necessary conditions for an adjunction to exist between fuzzy pre-
ordered sets was introduced in [6]. The main contribution in this paper is to
prove that the necessary conditions are also sufficient.

The structure of this work is the following: in the next section, we introduce
the preliminary definitions and results, essentially notions related to fuzzy pre-
orderings and to Galois connections, and some results which will be later needed.
Section 3 introduces several lemmas which allow to simplify the presentation of
the proof of the main result in Section 4, where the construction of the right
adjoint is given based on the set of necessary conditions already known from [6].
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2 Preliminary definitions and results

As usual, we will consider a residuated lattice L = (L,∨,∧,>,⊥,⊗,→) as un-
derlying structure for considering the generalization to a fuzzy framework.

An L-fuzzy set is a mapping from the universe set, say X, to the lattice L,
i.e. X : U → L, where X(u) means the degree in which u belongs to X.

Given X and Y two L-fuzzy sets, X is said to be included in Y , denoted as
X ⊆ Y , if X(u) ≤ Y (u) for all u ∈ U .

An L-fuzzy binary relation on U is an L-fuzzy subset of U × U , that is
ρU : U × U → L, and it is said to be:

– Reflexive if ρU (a, a) = > for all a ∈ U .
– Transitive if ρU (a, b)⊗ ρU (b, c) ≤ ρU (a, c) for all a, b, c ∈ U .
– Symmetric if ρU (a, b) = ρU (b, a) for all a, b ∈ U .
– Antisymmetric if ρU (a, b) = ρU (b, a) = > implies a = b, for all a, b ∈ U .

Definition 1 (Fuzzy poset / fuzzy preordered set).
An L-fuzzy poset is a pair U = (U, ρU ) in which ρU is a reflexive, antisym-

metric and transitive L-fuzzy relation on U .
An L-fuzzy preordered set is a pair U = (U, ρU ) in which ρU is a reflexive

and transitive L-fuzzy relation on U .
A crisp (pre-)ordering can be given in U by a ≤U b if and only if ρU (a, b) = >.

From now on, when no confusion arises, we will omit the prefix “L-”.

Definition 2. For every element a ∈ U , the extension to the fuzzy setting of
the notions of upset and downset of the element a are defined by a↑, a↓ : U → L
where a↓(u) = ρU (u, a) and a↑(u) = ρU (a, u) for all u ∈ U.

An element a ∈ U is an upper bound for a fuzzy set X if X ⊆ a↓. The
(crisp) set of upper bounds of X is denoted by UB(X). An element a ∈ U is a
maximum for a fuzzy set X if it is an upper bound and X(a) = >.

The definitions of lower bound and minimum are similar.

Note that, because of antisymmetry, maximum and minimum elements are nec-
essarily unique.

Definition 3. Let A = (A, ρA) and B = (B, ρB) be fuzzy posets.

1. A mapping f : A → B is said to be isotone if ρA(a1, a2) ≤ ρB(f(a1), f(a2))
for each a1, a2 ∈ A.

2. Moreover, a mapping f : A→ A is said to be inflationary if ρA(a, f(a)) = >
for all a ∈ A. Similarly. a mapping f is deflationary if ρA(f(a), a) = > for
all a ∈ A.

Definition 4 (Adjunction). Let A = (A, ρA), B = (B, ρB) be fuzzy posets, and
two mappings f : A → B and g : B → A. The pair (f, g) forms an adjunction
between A and B, denoted (f, g) : A� B if, for all a ∈ A and b ∈ B, the equality
ρA(a, g(b)) = ρB(f(a), b) holds.
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Notation 1 From now on, we will use the following notation, for a mapping
f : A → B and a fuzzy subset Y of B, the fuzzy set f−1(Y ) is defined as
f−1(Y )(a) = Y (f(a)), for all a ∈ A.

Finally, we recall the following theorem which states different equivalent
forms to define an adjunction between fuzzy posets.

Theorem 1 ( [5]). Let A = (A, ρA), B = (B, ρB) be fuzzy posets, and two
mappings f : A→ B and g : B → A. The following conditions are equivalent:

1. (f, g) : A� B.
2. f and g are isotone, g ◦ f is inflationary, and f ◦ g is deflationary.
3. f(a)↑ = g−1(a↑) for all a ∈ A.
4. g(b)↓ = f−1(b↓) for all b ∈ B.
5. f is isotone and g(b) = max f−1(b↓) for all b ∈ B.
6. g is isotone and f(a) = min g−1(a↑) for each a ∈ A.

The next theorem characterizes the situation in which a mapping from a
fuzzy poset to an unstructured set has a right adjoint (between fuzzy posets).

Theorem 2 ( [7]). Let (A, ρA) be a fuzzy poset and a mapping f : A −→ B. Let
Af be the quotient set over the kernel relation a ≡f b ⇐⇒ f(a) = f(b). Then,
there exists a fuzzy order ρB in B and a map g : B −→ A such that (f, g) : A� B
if and only if the following conditions hold:

1. There exists max[a]f for all a ∈ A.
2. ρA(a1, a2) ≤ ρA(max[a1]f ,max[a2]f ), for all a1, a2 ∈ A.

3 Building adjunctions between fuzzy preordered sets

In this section we start the generalization of Theorem 2 above to the framework
of fuzzy preordered sets.

The construction will follow that given in [9] as much as possible. Therefore,
we need to define a suitable fuzzy version of the p-kernel relation.

Firstly, we need to set the corresponding fuzzy notion of transitive closure of
a fuzzy relation, and this is done via the definition below:

Definition 5 (Transitive closure). Given a fuzzy relation S : U ×U → L, for
all n ∈ N, the iterations Sn : U ×U → L are recursively defined by the base case
S1 = S and, then,

Sn(a, b) =
∨
x∈U

(
Sn−1(a, x)⊗ S(x, b)

)
The transitive closure of S is a fuzzy relation Str : U × U → L defined by

Str(a, b) =

∞∨
n=1

Sn(a, b)
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The relation ≈A allows for gettting rid of the absence of antisymmetry, by
linking together elements which are ‘almost coincident’; formally, the relation
≈A is defined on a fuzzy preordered set (A, ρA) as follows:

(a1 ≈A a2) = ρA(a1, a2)⊗ ρA(a2, a1) for a1, a2 ∈ A

The kernel equivalence relation ≡f associated to a mapping f : A → B is
defined as follows for a1, a2 ∈ A:

(a1 ≡f a2) =

{
⊥ if f(a1) 6= f(a2)

> if f(a1) = f(a2)

Definition 6 (Fuzzy p-kernel). Let A = (A, ρA) be a fuzzy preordered set, and
f : A → B a mapping. The fuzzy p-kernel relation ∼=A is the fuzzy equivalence
relation obtained as the transitive closure of the union of the relations ≈A and
≡f .

Notice that the fuzzy equivalence classes [a]∼=A
: A → L are fuzzy sets, whose

definition is the following:

[a]∼=A
(x) = (x ∼=A a)

Lemma 1. Let A = (A, ρA) be a fuzzy preordered set, and f : A→ B a mapping.
Then, a1 ∼=A a2 = > if and only if [a1]∼=A

= [a2]∼=A
.

Proof. Consider a1, a2 ∈ A such that a1 ∼=A a2 = >, and let us prove that
[a1]∼=A

(u) = [a2](u) for all u ∈ A. Given u ∈ A, by using the neutral element of
the product, and symmetry and transitivity of ∼=A, we have that

(a1 ∼=A u) = >⊗ (a1 ∼=A u) = (a2 ∼=A a1)⊗ (a1 ∼=A u) ≤ (a2 ∼=A u)

Similarly, (a2 ∼=A u) ≤ (a1 ∼=A u) and, therefore, [a1]∼=A
(u) = [a2]∼=A

(u) for all
u ∈ A. �

All the preliminary notions about fuzzy posets introduced in the previous
section carry over fuzzy preordered sets. Note, however, that there is an impor-
tant difference which justifies the introduction of special terminology concern-
ing maximum or minimum element of a fuzzy subset X: due to the absence
of antisymmetry, there exists a crisp set of maxima (resp. minima) for X, not
necessarily a singleton, which we will denote p-max(X) (resp., p-min(X)).

The following definitions recall the notion of Hoare ordering between crisp
subsets, and then we introduce an alternative statement in the subsequent lemma:

Definition 7. Given a fuzzy preordered set (A, ρA), and C,D crisp subsets of
A, we define the following relations

– (C vW D) =
∨
c∈C

∨
d∈D

ρA(c, d)
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– (C vH D) =
∧
c∈C

∨
d∈D

ρA(c, d)

– (C vS D) =
∧
c∈C

∧
d∈D

ρA(c, d)

Lemma 2 ( [6]). Consider a fuzzy preordered set (A, ρA), and X,Y ⊆ A such
that p-minX 6= ∅ 6= p-minY , then(

p-minX vW p-minY
)

=
(
p-minX vH p-minY

)
=
(
p-minX vS p-minY

)
and their value coincides with ρA(x, y) for any x ∈ p-minX and y ∈ p-minY .

In [8], given a crisp poset (A,≤A) and a map f : A→ B, it was proved that
there exists an ordering ≤B in B and a map g : B → A such that (f, g) is a crisp
adjunction between posets from (A,≤A) to (B,≤B) if and only if

(I) There exists max([a]≡f
) for all a ∈ A.

(II) a1 ≤A a2 implies max([a1]≡f
) ≤A max([a2]≡f

), for all a1, a2 ∈ A.

where ≡f is the kernel relation associated to f .
These two conditions are closely related to the different characterizations of

the notion of adjunction, as stated in Theorem 1 (items 5 and 6); specifically,
condition (I) above states that if b ∈ B and f(a) = b, then necessarily g(b) =
max([a]≡f

), whereas condition (II) is related to the isotonicity of both f and g.
Later, in [9], the previous result was extended to give necessary and sufficient

conditions to ensure similar result in the framework of crisp preordered sets.
Specifically, it was proved that given any (crisp) preordered set A = (A,.A)
and a mapping f : A → B, there exists a preorder B = (B,.B) and g : B → A
such that (f, g) forms a crisp adjunction between A and B if and only if there
exists a subset S of A such that the following conditions hold:

(i) S ⊆
⋃
a∈A

p-max[a]∼=A

(ii) p-min(UB[a]∼=A
∩ S) 6= ∅, for all a ∈ A.

(iii) If a1 .A a2, then
(
p-min(UB[a1]∼=A

∩ S) vH p-min(UB[a2]∼=A
∩ S)

)
, for

a1, a2 ∈ A.

It is worth to mention that in the conditions above all the notions used are the
corresponding crisp versions of those defined in this paper.

In some sense, the conditions (i), (ii), (iii) reflect the considerations given in
the previous paragraph, but the different underlying ordered structure leads to
a different formalization. Formally, condition (I) above is split into (i) and (ii),
since in a preordered setting, if b ∈ B and f(a) = b, then g(b) needs not be in
the same class as a but being maximum in its class, as (i) states. However, the
latter condition is too weak and (ii) provides exactly the remaining requirements
needed in order to adequately reproduce the desired properties for g. Now, con-
dition (iii) is just the rephrasing of (II) in terms of the properties described in
(ii).
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Finally, in [6], it was proved that the natural extension of the previous con-
ditions to the fuzzy case are also necessary conditions to ensure the existence of
an adjunction between fuzzy preordered sets. Specifically,

Theorem 3. Given fuzzy preordered sets A = (A, ρA) and B = (B, ρB), and
mappings f : A→ B and g : B → A such that (f, g) : A� B then

1. gf(A) ⊆
⋃
a∈A

p-max[a]∼=A

2. p-min(UB[a]∼=A
∩ gf(A)) 6= ∅, for all a ∈ A.

3. ρA(a1, a2) ≤
(
p-min(UB[a1]∼=A

∩ gf(A)) vH p-min(UB[a2]∼=A
∩ gf(A))

)
for all a1, a2 ∈ A.

As a consequence of the previous theorem, a necessary condition for f to be a
left adjoint is the existence of a subset S ⊆ A such that the following conditions
hold for all a, a1, a2 ∈ A:

S ⊆
⋃
a∈A

p-max[a]∼=A
(1)

ϕS(a) 6= ∅, (2)

ρA(a1, a2) ≤
(
ϕS(a1) vH ϕS(a2)

)
(3)

where
ϕS(a)

def
= p-min(UB[a]∼=A

∩ S). (4)

Remark 1. Notice that, by Lemma 2,
(
ϕS(a1) vH ϕS(a2)

)
= ρA(x, y) for any

x ∈ ϕS(a1) and y ∈ ϕS(a2), and this justifies that, in order to simplify the
notation, we write ρA(ϕS(a1), ϕS(a2)) instead of

(
ϕS(a1) vH ϕS(a2)

)
.

The main contribution in this paper is to show the converse, namely, that the
conditions above are also sufficient so that f is a left adjoint.

4 Construction of the right adjoint

In this section, given f : A → B with the conditions above, we will construct a
fuzzy preordering on B together with a mapping g : B → A, which will turn out
to be a right adjoint to f .

Definition 8. Consider a fuzzy preordered set A = (A, ρA) together with a map-
ping f : A → B and a subset S ⊆ A satisfying the ambient hypotheses (1), (2)
and (3).

For all a0 ∈ A, we define the fuzzy relation ρa0

B : B ×B → L as follows

ρa0

B (b1, b2) = ρA(ϕS(a1), ϕS(a2))

where ai ∈ f−1(bi) if f−1(bi) 6= ∅ and ai = a0 otherwise, for each i ∈ {1, 2}.
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Notice that the definition might depend largely on the possible choices of ai;
the following lemma, based on Remark 1, shows that the value of ρa0

B actually
is independent of these choices.

Lemma 3. The fuzzy relation ρa0

B is well-defined, and it is a fuzzy preordering
in B.

Proof. The definition does not depend on the choice of preimages ai since, if
other preimages āi would have been chosen, then (ai ≡f āi) = > and, hence,
by Lemma 1, the fuzzy sets corresponding to the equivalence classes [ai]∼=A

and
[āi]∼=A

would coincide and ϕS(ai) = ϕS(āi). Moreover, by Remark 1, we have
that

ρA(ϕS(a1), ϕS(a2)) = ρA(x, y) for any x ∈ ϕ(a1) and y ∈ ϕ(a2)

whose value is independent from the choice of x and y.
From the reflexivity of ρA, it is straightforward that ρa0

B is reflexive. Finally,
it is just a matter of easy computations to check that ρa0

B is transitive. �

We can now focus on the definition of suitable mappings g : B → A such that
(f, g) forms an adjoint pair.

Lemma 4. Let A = (A, ρA) be a fuzzy preordered set, f : A→ B be a mapping
and S be a subset of A satisfying the ambient hypotheses (1), (2) and (3). Given
a0 ∈ A, then there exists a mapping g : B → A such that (f, g) : (A, ρA) �
(B, ρa0

B ) where ρa0

B is the fuzzy preordering introduced in Definition 8.

Proof. There is a number of suitable definitions of g : B → A, and all of them
can be specified as follows:

(C1) If b ∈ f(A), then g(b) is any element in ϕS(xb) for some xb ∈ f−1(b).
(C2) If b /∈ f(A), then g(b) is any element in ϕS(a0).

The existence of g is clear by the axiom of choice, since for all b ∈ f(A), the sets
f−1(b) are nonempty (so xb can be chosen for all b ∈ f(A)) and, moreover, by
ambient hypothesis (2), ϕS(xb) and ϕS(a0) are nonempty as well.

Now, we have to prove that g is a right adjoint to f , that is, for all a ∈ A
and b ∈ B the following equality holds

ρa0

B

(
f(a), b

)
= ρA

(
a, g(b)

)
By definition of ρa0

B (see Definition 8), we have that

ρa0

B (f(a), b) = ρA(ϕS(a), ϕS(w))

where w satisfies either w ∈ f−1(b) if b ∈ f(A) (therefore, we can choose w to
be xb above) or, otherwise, w = a0. In either case, g(b) ∈ ϕS(w) by construction
(namely, (C1) and (C2)). Thus,

ρa0

B (f(a), b) = ρA(x, g(b)) for any x ∈ ϕS(a) (5)
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The proof will be finished if we show that, fixing x ∈ ϕS(a), we can show the
equality ρA(x, g(b)) = ρA(a, g(b)).

Firstly, by definition of ϕS , see (4), note that x ∈ ϕS(a) implies ρA(a, x) = >
and, hence, we have that

ρA
(
x, g(b)

)
= ρA(a, x)⊗ ρA

(
x, g(b)

)
≤ ρA

(
a, g(b)

)
(6)

For the other inequality, using ambient hypothesis (3), we have

ρA
(
a, g(b)

)
≤ ρA

(
ϕS(a), ϕS

(
g(b)

))
= ρA(x, y) (7)

for any x ∈ ϕS(a) and y ∈ ϕS(g(b)).
Since y ∈ ϕS

(
g(b)

)
we have that ρA(y, α) = > for all α ∈ UB[g(b)]∼=A

∩ S;
on the other hand, since g(b) ∈ S then g(b) ∈ p-max[g(b)]∼=A

, particularly g(b) ∈
UB[g(b)]∼=A

, hence g(b) ∈ UB[g(b)]∼=A
∩ S. As a result, we obtain ρA

(
y, g(b)

)
=

>. Now, connecting expression (7) with transitivity of ρA,

ρA
(
a, g(b)

)
≤ ρA(x, y) = ρA(x, y)⊗ ρA

(
y, g(b)

)
≤ ρA

(
x, g(b)

)
(8)

for all x ∈ ϕS(a). Joining Equations (6) and (8) we obtain, ρA(x, g(b)) =
ρA(a, g(b)) and, finally, Equation (5) leads to

ρa0

B

(
f(a), b

)
= ρA(a, g(b)).

�

We can now conclude this section by stating the necessary and sufficient con-
ditions for the existence of right adjoint from a fuzzy preorder to an unstructured
set. In this statement, for readability reasons, we do not use the syntactic sugared
version of the previous lemma (namely, ϕS) but, instead, state the conditions
directly in their low level appearance.

Theorem 4. Given a fuzzy preordered set A = (A, ρA) together with a mapping
f : A → B, there exists a fuzzy preordering ρB in B and a mapping g : B → A
such that (f, g) : A � B if and only if there exists S ⊆ A such that, for all
a, a1, a2,∈ A:

1. S ⊆
⋃
a∈A

p-max[a]∼=A

2. p-min(UB[a]∼=A
∩ S) 6= ∅

3. ρA(a1a2) ≤
(
p-min(UB[a1]∼=A

∩ S) vH p-min(UB[a2]∼=A
∩ S)

)
.

Proof. Necessity follows from [6, Thm. 4], considering S = gf(A); sufficiency
follows from Lemma 4. �



Actas de la XVI Conferencia CAEPIA, Albacete Nov 2015 447

5 Conclusions

Based on the set of necessary conditions for the existence of right adjunction
(between fuzzy preorders) to a mapping f : (A, ρA) → B, we have proved that
these conditions are also sufficient.

It is remarkable the fact that the right adjoint is not unique. In fact, there is
a number of degrees of freedom in order to define it: just consider the parameter-
ized construction of g that we have given in terms of an element a0 ∈ A (in the
case of non-surjective f). Note, however, that our results do not imply that every
right adjoint should be like that; we simply chose a convenient construction to
extent the induced fuzzy ordering on the image of f to the whole set B, and
maybe other constructions would be adequate as well (but this is further work).

It is worth to note that there are different versions of antisymmetry and re-
flexivity in a fuzzy environment (see, for instance, [2, 3]). Accordingly, another
line of future work will be the adaptation of the current results to these alter-
native definitions. Another source of future work will be to study the potential
relationship to other approaches based on adequate versions of fuzzy closure
systems [10].
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