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Abstract. Qualitative reasoning is an area of AI which provides so-
lutions to problems where the quantitative information either is not
available or can not be used; in particular, order of magnitude quali-
tative reasoning assumes different qualitative classes and relations such
as negligibility and closeness. In this paper, we focus mainly on the very
important notion of closeness from the logical point of view, which has
not received much attention in the literature. Our notion of closeness
is based on the so-called proximity intervals, which will be used to de-
cide the elements that are close to each other. Some of the intuitions
of this definition are explained on the basis of examples. We introduce
a multimodal logic for order of magnitude reasoning which includes the
notions of closeness and negligibility, we provide an axiom system, which
is sound and complete.

1 Introduction

Qualitative reasoning (QR) is very useful for searching solutions to problems
about the behavior of physical systems without using exact numerical data.
This way, it is possible to reason on incomplete knowledge by providing an
abstraction of the numerical values [8, 13] finding solutions to problems that
cannot be solved using just a quantitative approach. QR has many applications
in AI and, concerning logics for QR, some papers have been focused on Spatio-
Temporal Reasoning [2], and about solutions of ordinary differential equations
[12]. Moreover, there are recent proposals of logics to deal with movement [10]
and qualitative velocities [6].

Another interesting approach to QR is to reason with orders of magni-
tude [11,14], in which the management of exact values is substituted by reasoning
on qualitative classes and relations among them. There are some multimodal log-
ics for order of magnitude reasoning dealing with the relations of negligibility
and comparability, see for instance [3, 9]; however, as far as we know, the only
published reference on the notion of closeness in a logic-based context is [5],
where the notions of closeness and distance are treated using Propositional Dy-
namic Logic, and their definitions are based on the concept of qualitative sum;
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specifically, in [5] two values are assumed to be close if one of them can be ob-
tained from the other by adding a small number, and small numbers are defined
as those belonging to a fixed interval. This specific approach has a number of
potential applications but might not be so useful in other situations, for instance,
let us consider physical spaces where there are natural or artificial barriers: you
can be very close to a place, but if there is a river or a wall, this place is not
really so close; we can think of a robot moving in a house for which two points
physically close but in different rooms are actually not close. Similarly, one can
consider time barriers, such as a deadline to submit an article: if the deadline is,
for instance, May 31, the date May 30 can be considered close to the deadline,
from the author’s point of view, but Jun 1 is not so, because the deadline is
already over.

In this paper, we consider a new logic-based alternative to the notion of close-
ness in the context of multimodal logics. Our notion of closeness stems from the
idea that two values are considered to be close if they are inside a prescribed
area or proximity interval. This idea applies to the situations described in the
previous paragraph, although it may differ from other intuitions based on dis-
tances since it leads to an equivalence relation, particularly, transitivity holds.
Neither reflexivity nor symmetry of closeness generate any discussion among the
different authors, but transitivity does. The original notion of closeness given by
Raiman in [11] allows a certain form of transitivity which he had to tame by
using a number of arbitrary limitations to avoid an unrestricted application of
chaining. This arbitrariness was criticized in [1], in which a fuzzy set-based ap-
proach for handling relative orders of magnitude was introduced. It is remarkable
to note that the criticism was made against the arbitrary limitations on chain-
ing the relation, or the impossibility of considering suitable modified versions of
transitivity, but not on transitivity per se.

The limitations stated above do not apply to our approach, which can be
seen as founded on the notion of granularity as given in [7], which was already
suggested in [15]. The main difficulties in accepting closeness as a transitive
relation arise in a distance-based interpretation because, then, its unrestricted
use would collapse the relation since all the elements would be close. As stated
above, our notion will be based not on distance but on membership to a certain
element of a given set of proximity intervals, since our driving force is to define
an abstract framework for dealing with natural or artificial barriers.

On the other hand, the negligibility notion provided in this paper is a slight
generalization of the one given in [4] where, following the line of other classical
approaches, for instance [14], the class of 0 is considered to be just a singleton.
This choice makes little sense in a qualitative approach, since considering the
class of 0 to be just a singleton would require to have measures with infinite preci-
sion. Instead, in this paper, we consider the qualitative class inf of infinitesimals
which, of course, will be all close to each other. Note that these infinitesimals
will be interpreted as numbers indistinguishable from 0 in the sense that their
difference cannot be measured, not in the sense of hyperreal numbers.
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We introduce a multimodal logic for order of magnitude reasoning which
manages the notions of closeness and negligibility, then an axiom system is in-
troduced and its soundness and completeness proved. In addition, the decid-
ability of this logic is shown by proving the strong finite model property. The
main contributions of the paper are the new definition of closeness and its treat-
ment in a multimodal logic context; it is worth to remark that, although the
proofs of completeness and decidability are based on standard techniques (step
by step method and filtrations) the specific nature of our logic-based approach
makes that the results are not straightforward and, as a result, their proofs are
technically interesting.

2 Closeness and negligibility

We will consider a strictly ordered set of real numbers (S, <) divided into the
following qualitative classes:

nl = (−∞,−γ) ps = (+α,+β]

nm = [−γ,−β) inf = [−α,+α] pm = (+β,+γ]

ns = [−β,−α) pl = (+γ,+∞)

Note that all the intervals are considered relative to S.
The labels correspond to “negative large” (nl), “negative medium”(nm),

“negative small”(ns), “infinitesimals”(inf), “positive small” (ps), “positive me-
dium” (pm) and “positive large” (pl). It is worth to note that this classification
is slightly more general than the standard one [14], since the qualitative class
containing the element 0, i.e. inf, needs not be a singleton; this allows for con-
sidering values very close to zero as null values in practice, which is more in
line with a qualitative approach where accurate measurements are not always
possible.

Let us now introduce the notion of closeness. As stated in the introduction,
the intuitive idea underlying our notion of closeness is that, in real life problems,
there are situations in which we consciously choose not to distinguish between
certain pairs of elements (for instance, two cars priced 19 000 e and 18 000 e
might be both acceptable, but perhaps 20 000 e is considered too expensive for
our budget). Somehow, there exist some areas of indistinguishability so that x
is said to be close to y if and only if both x and y belong to the same area
(although, in the example, 18 000 and 20 000 are equidistant to 19 000, the psy-
chological perception1 is that 20 000 might be too expensive and, therefore, it is
not considered close to 19 000).

We will consider each qualitative class to be divided into disjoint intervals
called proximity intervals, as shown in Figure 1. The qualitative class inf is itself
one proximity interval.

Definition 1. Let (S, <) be a strictly linear ordering divided into the qualitative
classes defined above.

1 This is a well-known effect in marketing.
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−γ γ−β β−α α

nl nm ns inf ps pm pl

Fig. 1. Proximity intervals.

– An r-proximity structure is a finite set I(S) = {I1, I2, . . . , Ir} of intervals
in S, such that:

1. For all Ii, Ij ∈ I(S), if i 6= j, then Ii ∩ Ij = ∅.
2. I1 ∪ I2 ∪ · · · ∪ Ir = S.
3. For all x, y ∈ S and Ii ∈ I(S), if x, y ∈ Ii, then x, y belong to the same

qualitative class.
4. inf ∈ I(S).

– Given a proximity structure I(S), the binary relation of closeness c is defined,
for all x, y ∈ S, as follows: x cy if and only if there exists Ii ∈ I(S) such that
x, y ∈ Ii.

Notice that, by definition, the number of proximity intervals is finite, re-
gardless of the cardinality of the set S. This choice is justified by the nature
of the measuring devices that after reaching a certain limit, they do not distin-
guish among nearly equal amounts; for instance, consider the limits to represent
numbers in a pocket calculator, thermometer, speedometer, etc.

As a result of considering just finitely many proximity intervals, it can be
the case that two elements exist whose magnitudes are not comparable but,
according to this approach, turn out to be comparable. In everyday life, we often
face similar situations where excessively large quantities are no longer considered
to have an appreciable difference.

For instance, if the limit of users simultaneously connected to a server is,
say, 1 000 000 users, it is clear that the response would be the same than if
10 000 000 users are connected to the server. In this case, although these quanti-
ties may not be comparable in absolute terms, they turn out to be comparable
from the point of view of the response of the server. Nevertheless, if for some
reason, we need these quantities to be not comparable, we have just to change
the choice of the qualitative classes in our approach.

From now on, we will denote by Q = {nl,nm,ns, inf,ps,pm,pl} the set of
qualitative classes, and by qc to any element of Q.

The following proposition is an immediate consequence of the definition.

Proposition 1. The relation c defined above has the following properties:

1. c is an equivalence relation on S.
2. For all x, y, z ∈ S, the following holds:

(a) If x, y ∈ inf, then x c y.
(b) For every qc ∈ Q, if x ∈ qc and x c y, then y ∈ qc.
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The informal notion of negligibility we will use in this paper is the following:
x is said to be negligible with respect to y if and only if either (i) x is infinitesimal
and y is not, or (ii) x is small (but not infinitesimal) and y is sufficiently large.

Definition 2. Let (S, <) be a strictly linear divided into the qualitative classes
defined above. The binary relation of negligibility n is defined on S as xny if and
only if one of the following situations holds:

(i) x ∈ inf and y /∈ inf,

(ii) x ∈ ns ∪ ps and y ∈ nl ∪ pl.

The following straightforward result states some interesting properties about
the interaction between the relations of closeness and negligibility.

Proposition 2. For all x, y, z ∈ S we have:

(i) If x c y and y n z, then x n z.
(ii) If x n y and y c z, then x n z.

In order to further explain the underlying behavior of the definitions of close-
ness and negligibility, we include the following example.

Example 1. It does not rain very often in a city like Málaga (Spain), but there is
a real danger of floods due to torrential rain. For this reason, there is a reservoir
very close to the city in order to control the water flooding from the mountains.
We represent the quantity of water in the reservoir by positive qualitative classes
ps,pm,pl, and consider the proximity intervals, with a length that can be con-
sidered as non-significative with respect to the total quantity of water of the
reservoir, for instance 1 000 litres. Using the previous definitions, we can express
many interesting situations. For instance, assume that ps is the level of water
in the reservoir considered OK (that is, safe), with pm a warning message must
be shown, and pl is a dangerous situation that forces to open the floodgates. If
the quantity of water x is OK, that is x ∈ ps and some rain is expected such as
the quantity of water will increase to y, several results are possible out of which
we detail the following: (a) if x c y, then y ∈ ps, meaning that if a small rain is
expected, then the situation will remain OK and there is no need to open the
floodgates; (b) if x n y, then y ∈ pl, which means that if a big rain is expected,
the floodgates must be opened and some water has to be released.

The properties given in Proposition 2 can be used in this context. If a small
rain is coming (x c y) an after that a big rain is expected (y n z), then the
floodgates must be opened (xn z), by using property (i). Similarly, property (ii)
in Proposition 2 can be used whenever a big rain is coming (x n y) followed by
a small rain (y c z), so the floodgates must be opened also (x n z).

3 Syntax and semantics of L(MQ)P

In this section, we will use as special modal connectives
−→
� and

←−
� to deal with

the usual ordering <, so
−→
�A and

←−
�A have the informal readings: A is true for
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all numbers greater than the current one and A is true for all number less than
the current one, respectively. Two other modal operators will be used, �c for
closeness, where the informal reading of �c A is: A is true for all number close
to the current one, and �n for negligibility, where �n A means A is true for all
number with respect to the current one is negligible.

The alphabet of the language L(MQ)P is defined by using a stock of atoms or
propositional variables, V, the classical connectives ¬,∧,∨ and→; the constants
for milestones α−, α+, β−, β+, γ−, γ+; a finite set C of constants for proximity

intervals, C = {c1, . . . , cr} 2; the unary modal connectives
−→
� ,
←−
� , �n , �c , and the

parentheses ‘(’ and ‘)’. We define the formulas of L(MQ)P as follows:

A = p | ξ | ci | ¬A | (A ∧A) | (A ∨A) | (A→ A) | −→�A | ←−�A | �n A | �c A

where p ∈ V, ξ ∈ {α+, α−, β+, β−, γ+, γ−} and ci ∈ C. In order to refer to any
constant for positive milestones as α+ we will use ξ+ and for negative ones as
β− we will use ξ−.

The mirror image of a formula A is the result of replacing in A each oc-

currence of
−→
� ,
←−
� , α+, β+ and γ+ respectively by

←−
� ,
−→
� , α−, β− and γ− and

reciprocally. We will use the symbols
−→
♦ ,
←−
♦ ,♦c ,♦n as abbreviations, respectively,

of ¬−→�¬, ¬←−�¬, ¬�c ¬ and ¬�n ¬. Moreover, we will introduce nl, . . . pl as abbrevi-

ations for qualitative classes, for instance, ps for (
←−
♦α+ ∧

−→
♦β+)∨ β+. By means

of qc we denote any element of the set {nl, nm, ns, inf, ps, pm, pl}.
The cardinality r of the set C of constants for proximity intervals will play

an important role since it, somehow, encodes the granularity of the underlying
logic. This implies that, actually, we are introducing a family of logics which
depend parametrically on r.

Definition 3. A multimodal qualitative frame for L(MQ)P (a frame, for short)
is a tuple Σ = (S,D, <, I(S),P), where:

1. (S, <) is a strict linearly ordered set.

2. D = {+α,−α,+β,−β,+γ,−γ} is a set of designated points in S (called
milestones).

3. I(S) is an r-proximity structure.

4. P is a bijection (called proximity function), P : C −→ I(S), that assigns to
each proximity constant c a proximity interval.

Definition 4. Let Σ be a frame for L(MQ)P , a multimodal qualitative model
on Σ (a MQ-model, for short) is an ordered pair M = (Σ, h), where h is a
meaning function (or, interpretation) h : V −→ 2S. Any interpretation can be
uniquely extended to the set of all formulas in L(MQ)P (also denoted by h)
by means of the usual conditions for the classical Boolean connectives and the

2 There are at least as many elements in C as qualitative classes.
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following conditions:

h(
−→
�A) = {x ∈ S | y ∈ h(A) for all y such that x < y}

h(
←−
�A) = {x ∈ S | y ∈ h(A) for all y such that y < x}

h(�c A) = {x ∈ S | y ∈ h(A) for all y such that x c y}
h(�n A) = {x ∈ S | y ∈ h(A) for all y such that x n y}
h(α+) = {+α} h(β+) = {+β} h(γ+) = {+γ}
h(α−) = {−α} h(β−) = {−β} h(γ−) = {−γ}
h(ci) = {x ∈ S | x ∈ P(ci)}

The definitions of truth, satisfiability and validity are the usual ones.

4 An axiom system for L(MQ)P

In this section we consider the axiom system MQP for the language L(MQ)P ,
consisting of all the tautologies of classical propositional logic together with the
following axiom schemata and rules of inference:

For white connectives

K1
−→
�(A→ B)→ (

−→
�A→ −→�B)

K2 A→ −→�
←−
♦A

K3
−→
�A→ −→�−→�A

K4
(−→
�(A ∨B) ∧ −→�(

−→
�A ∨B) ∧ −→�(A ∨ −→�B)

)
→
(−→
�A ∨ −→�B

)
For constants ξ ∈ {α+, β+, γ+, α−, β−, γ−}

c1
←−
♦ ξ ∨ ξ ∨

−→
♦ ξ

c2 ξ → (
←−
�¬ξ ∧ −→�¬ξ)

c3 γ− →
−→
♦β−

c4 β− →
−→
♦α−

c5 α− →
−→
♦α+

c6 α+ →
−→
♦β+

c7 β+ →
−→
♦ γ+

For proximity constants (for all i, j ∈ {1, . . . , n})

p1
∨n

i=1 ci
p2 ci → ¬cj (for i 6= j)

p3 (
←−
♦ ci ∧

−→
♦ ci)→ ci

p4
←−
♦ ci ∨ ci ∨

−→
♦ ci

Mixed axioms (for all i ∈ {1, . . . , n})

m1 (ci ∧ qc)→
(←−
�(ci → qc) ∧ −→�(ci → qc)

)
m2 (ci ∧ inf)→

(←−
�(inf→ ci) ∧

−→
�(inf→ ci)

)
m3 �c A↔

(
A ∧

∨r
i=1

(
ci ∧
←−
�(ci → A) ∧ −→�(ci → A)

))
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m4 �n A↔
((

inf→
(←−
�(¬inf→ A) ∧ −→�(¬inf→ A)

))
∧(

(ns ∨ ps)→
(←−
�(nl→ A) ∧ −→�(pl→ A)

)))
The mirror images of K1, K2 and K4 are also considered as axioms.

Rules of inference:

(MP) Modus Ponens for →.

(N
−→
�) If ` A then ` −→�A.

(N
←−
�) If ` A then ` ←−�A.

The syntactical notions of theorem and proof for MQP are defined as usual.

Example 2. The aim of this example is to specify in L(MQ)P the behavior
of a device to automatically control the speed of a car. Assume the system
has, ideally, to maintain the speed close to some speed limit v. For practical
purposes, any value in an interval [v − ε, v + ε] for small ε is admissible. The
extreme points of this interval can then be considered as the milestones −α and
+α of our frames; on the other hand, we will consider different levels of velocity
in a qualitative approach ranging from very slow to very fast. We will introduce
consequently the atoms v−3, v−2, v−1, v0, v1, v2, v3 associated to them (which are
interpreted, respectively, as the qualitative classes nl, nm, ns, inf, ps, pm, pl
and, moreover, v0 represents the interval [v − ε, v + ε]).

We will introduce also the atoms accelerate, maintain, release and brake

to describe actions of the system with their intuitive meaning.
Now we represent how the system works:

1. Whenever the speed is below the intended limit, then the engine is acceler-
ated, whereas when the speed is within the admissible limits, the speed is
maintained. Thus, we have the two formulas below

(v−3 ∨ v−2 ∨ v−1)→ accelerate v0 → maintain

2. It can happen that the speed increases more than the limit allowed due to
external factors, for instance when the road has negative slope, this way
some rules are required to maintain the speed. Usually, when the car reaches
the speed limit, the driver does not brake immediately but releases the accel-
erator instead, so that the air friction helps to recover an admissible speed.
We accomplish this action precisely in the proximity interval immediately
after v0, which we will call, say, c. As a result, we have the two formulas

c→ (
←−
♦α+ ∧←−�(

←−
♦α+ → c)) c→ release

3. When we are beyond the limit imposed by the interval c, then the system
has to actively brake:

(¬c ∧
←−
♦ c)→ brake
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According to the intended meaning of the previous formulas, the atoms accelerate,
keep, release and brake are true, respectively, at

nl ∪ nm ∪ ns inf Ic (psr Ic) ∪ pm ∪ pl

where Ic is the proximity interval represented by c. Note that the length of this
interval depends on the granularity of the system; indeed, given the axiom m1,
Ic should be included in the class ps.

Some consequences of the behavior of the system (specifically, valid formulas
in the model) are the following:

brake→ −→�brake

(If the system brakes at a specific speed, then it brakes at higher speeds)

release→ �c (v1 ∧ ¬brake)

(If the throttle is released at certain speed, then any small variation implies
that the speed is still slightly fast and the system does not brake)

release→ �n (v−3 → accelerate)

(If the throttle is released at certain speed and, by any circumstances, the
speed decreases excessively, then it has to accelerate again)

accelerate→ �c ¬brake
(If the system accelerates, it will not brake immediately)

v0 →
−→
�(v2 →

←−
♦ release)

(The throttle is released before reaching a fast speed)

The space limit does not allow to include details on the expressivity of the
axiom system introduced above; but it can be proved to be sound and complete
for the semantics established at the beginning of the paper and, furthermore,
decidible.

5 Conclusions and future work

Logics for order of magnitude reasoning are important to deal with situations
where numerical values are either imprecise or unavailable. Negligibility and
closeness are two important relations in the area of qualitative reasoning and,
in this paper, we have presented a sound, complete and decidable multimodal
logic for order of magnitude reasoning which considers negligibility and a new
approach to closeness, based on proximity intervals, a notion which turned out
to be a useful tool to decide whether two elements are close to each other.

As future work, we are studying the computational complexity of the satis-
fiability problem in this logic.
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