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Abstract. NM-landscapes have been recently introduced as a class of
tunable rugged models. They are a subset of the general interaction mod-
els where all the interactions are of order less or equal M . The Boltzmann
distribution has been extensively applied in single-objective evolutionary
algorithms to implement selection and study the theoretical properties
of model-building algorithms. In this paper we propose the combination
of the multi-objective NM-landscape model and the Boltzmann distri-
bution to obtain Pareto-front approximations. We investigate the joint
effect of the parameters of the NM-landscapes and the probabilistic fac-
torizations in the shape of the Pareto front approximations.
keywords: multi-objective optimization, NM-landscape, factorizations,
Boltzmann distribution

1 Introduction

One important question in multi-objective evolutionary algorithms (MOEAs) is
how the structure of the interactions between the variables of the problem in-
fluences the different objectives and impacts in the characteristics of the Pareto
front (e.g. discontinuities, clustered structure, etc.). The analysis of interactions
is also important because there is a class of MOEAs that explicitly capture and
represent these interactions to make a more efficient search [3, 10, 14]. In this
paper, we approach this important question by combining the use of a multi-
objective fitness landscape model with the definition of probability distributions
on the search space and different factorized approximations to these joint distri-
butions. Our work follows a similar methodology to the one used in [11–13, 16]
to investigate the relationship between additively decomposable single-objective
functions and the performance of estimation of distribution algorithms (EDAs)
[6, 8].

Landscapes models are very useful to understand the behavior of optimizers
under different hypothesis about the complexity of the fitness function. Per-
haps the best known example of such models is the NK fitness landscape [5], a
parametrized model of a fitness landscape that allows to explore the way in which
the neighborhood structure and the strength of interactions between neighboring
variables determine the ruggedness of the landscape. One relevant aspect of the
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NK-fitness landscape is its simplicity and wide usability across disciplines from
diverse domains.

Another recently introduced landscape model is the NM-landscape [9]. It
can be seen as a generalization of the NK-landscape. This model has a number
of attributes that makes it particularly suitable to control the strength of the
interactions between subsets of variables of different size. In addition, it is not
restricted to binary variables and allows the definition of functions on any arity.

In [20], the NM-landscape was extended to multi-objective problems and used
to study the influence of the parameters in the characteristics of the MOP. We
build on the work presented in [20] to propose the use of the multi-objective NM-
landscape (mNM-landscape) for investigating how the patterns of interactions
in the landscape model influence the shape of the Pareto front. We go one step
further and propose the use of factorized approximations computed from the
landscapes to approximate the Pareto fronts. We identify the conditions in which
these approximations can be accurate.

2 NM-landscape

2.1 Definition

Let X = (X1, . . . , XN ) denote a vector of discrete variables. We will use x =
(x1, . . . , xN ) to denote an assignment to the variables. S will denote a set of
indices in {1, . . . , N}, and XS (respectively xS) a subset of the variables of X
(respectively x) determined by the indices in S.

A fitness landscape F can be defined forN features using a general parametric
interaction model of the form:

F (x) =
l∑

k=1

βUk

∏

i∈Uk

xi (1)

where l is the number of terms, and each of the l coefficients βUk
∈ R. For

k = 1, . . . , l, Uk ⊆ {1, 2, . . . , N}, where Uk is a set of indices of the features in the
kth term, and the length |Uk| is the order of the interaction. By convention [9],
it is assumed that when Uk = ∅,

∏
j∈Uk

xj ≡ 1. Also by convention, we assume
that the model is defined for binary variables represented as xi ∈ {−1, 1}.

The NM models [9] comprise the set of all general interactions models spec-
ified by Equation 1, with the following constraints:

– All coefficients βUk
are non-negative.

– Each feature value xi ranges from negative to positive values.
– The absolute value of the lower bound of the range is lower or equal than

the upper bound of the range of xi.

One key element of the model is how the parameters of the interactions are
generated. In [9], each βUk

is generated from e−abs(N (0,σ)), where N (0, σ) is a
random number drawn from a Gaussian distribution with mean 0 and standard
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deviation σ. Increasing σ determines smaller range and increasing clumping of
fitness values. In this paper, we use the same procedure to generate the βUk

parameters.
We will focus on NM-models defined on the binary alphabet. In this case,

the NM-landscape has a global maximum that is reached at x = (1, . . . , 1) [9].

3 Multi-objective NM-landscapes

The multi-objective NM-landscape model (mNM-landscape) is defined [20] as a
vector function mapping binary vectors of solutions into m real numbers f(.) =
(f1(.), f2(.), . . . , fm(.)) : BN → Rm, where N is the number of variables, m is
the number of objectives, fi(.) is the i-th objective function, and B = {−1, 1}.
M = {M1, . . . ,Mm} is a set of integers where Mi is the maximum order of the
interaction in the i-th landscape. Each fi(x) is defined similarly to Equation (1)
as:

fi(x) =

li∑

k=1

βUki

∏

j∈Uki

xj , (2)

where li is the number of terms in objective i, and each of the li coefficients
βUki

∈ R. For k = 1, . . . , li, Uki
⊆ {1, 2, . . . , N}, where Uki

is a set of indices of
the features in the kth term, and the length |Uki

| is the order of the interaction.
Notice that the mNM fitness landscape model allows that each objective may

have a different maximum order of interactions. The mNM-landscape is inspired
by previous extensions of the NK fitness landscape model to multi-objective
functions [1, 2, 7, 21].

One of our goals is to use the mNM-landscape to investigate the effect that
the combination of objectives with different structures of interactions has in
the characteristics of the MOP. Without lack of generality, we will focus on
bi-objective mNM-landscapes (i.e., m = 2) and will establish some connections
between the objectives. In this section we explain how the constrained mNM-
landscapes are designed.

As previously explained, the NM-model is defined for (x1, . . . , xN ) ∈ {−1, 1}.
However, we will use a representation in which (x1, . . . , xN ) ∈ {0, 1}. The follow-
ing transformation [20] maps the desired representation to the one used by the
mNM-landscape. Given the analysis presented in [9], it also guarantees that the
Pareto set will comprise at least two points, respectively reached at (0, . . . , 0)
and (1, . . . , 1) for objectives f1 and f2.

f1(y) : yi = −2xi + 1 (3)

f2(z) : zi = 2xi − 1 (4)

where y = (y1, . . . , yN ) ∈ {−1, 1} and z = (z1, . . . , zN ) ∈ {−1, 1} are the new
variables obtained after the corresponding transformation have been applied to
x = (x1, . . . , xN ) ∈ {0, 1}.
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When the complete space of solutions is evaluated, we add two normalization
steps to be able to compare landscapes with different orders of interactions. In the
first normalization step, f(x) is divided by the number of the interaction terms
(li). In the second step, we re-normalize the fitness values to the interval [0, 1],
this is done by subtracting the minimum fitness value among all the solutions,
and dividing by the maximum fitness value minus the minimum fitness value.

Another constraint we set in some of the experiments is that, if M1 < M2

then, βUk1
= βUk2

for all |Uki
| ≤ M1. This means that all interactions contained

in f1 are also contained in f2, but f2 will also contain higher order interactions.
Starting from a single mNM-landscape f of order M we will generate all pairs
of models M1,M2, where M1 ≤ M2 ≤ M . The coefficients βUk

for f1 and f2 will
be set as in f . The idea of considering these pairs of objectives is to evaluate
what is the influence in the shape of the Pareto front, and other characteristics
of the MOPs, of objectives that have different order of interactions between their
variables.

4 Boltzmann distribution

The relationship between the fitness function and the variables dependencies that
arise in the selected solutions can be modeled using the Boltzmann probability
distribution [11, 12]. The Boltzmann probability distribution pB(x) is defined as

pB(x) =
e

g(x)
T

∑
x
′ e

g(x′)
T

, (5)

where g(x) is a given objective function and T is the system temperature that
can be used as a parameter to smooth the probabilities.

The key point about pB(x) is that it assigns a higher probability to solutions
with better fitness. The solutions with the highest probability correspond to the
optima.

Starting from the complete enumeration of the search space, and using as the
fitness function the objectives of an mNM-landscape, we associate to each pos-
sible solution xi of the search space m probability values (p1Bi

(xi), . . . , pmBi
(xi))

according to the corresponding Boltzmann probability distributions. There is
one probability value for each objective and in this paper we use the same tem-
perature parameter T = 1 for all the distributions.

Using the Boltzmann distribution we can investigate how potential regu-
larities of the fitness function are translated into statistical properties of the
distribution [11]. This question has been investigated for single-objective func-
tions in different contexts [15, 18, 17] but we have not found report on similar
analysis for MOP. One relevant result in single-objective problems is that if the
objective function is additively decomposable in a set of subfunctions defined
on subsets of variables (definition sets), and the definition sets satisfy certain
constraints, then it is possible to factorize the associated Boltzmann distribu-
tion into a product of marginal distributions [12]. Factorizations allow problem
decomposition and are at the core of EDAs.
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5 Experiments

In our experiments we investigate the following issues:

– How the parameters of mNM model determine the shape of the Pareto front?
– How is the strength of the interactions between variables influenced by the

parameters of the model?
– Under which conditions can factorized approximations of the Boltzmann

probability reproduce the shape of the Pareto front?

Algorithm 1 describes the steps of our simulations. We use a reference NM
landscape (N = 10, M = 2) and create a bi-objective mNM model from it using
different combinations of parameters σ and |Uki

|.

Algorithm 1: Simulation approach

1 Define the mMN model using its parameters.

2 For each objective:

3 Evaluate the 2N points of the search space.

4 Compute the Boltzmann distribution.

5 Compute the univariate marginals from the Boltzmann distribution.

6 For all solutions, compute univariate distribution as the product of univariate
marginals.

7 Determine the Pareto front using the objective values.

8 Determine the approximation of the Pareto front using the univariate factoriza-
tions of all the objectives.

5.1 Influence of the mNM-landscape parameters

We investigate how the parameters of mNM model determine the shape of the
Pareto.

Figure 1 (column 1) shows the evaluation of the 210 solutions that are part of
the search space forN = 10 and different values of σ and |Uki

|. From row 1 to row
4, the figures respectively show the objective values of the mNM landscape for
different combination of its parameters: (σ = 1, |Uki

| = 1), (σ = 1, |Uki
| = 19),

(σ = 2, |Uki
| = 1), (σ = 2, |Uki

| = 19).
The influence of σ can be seen by comparing the figure in row 1 with the

figure in row 2, and doing a similar comparison with figures in row 3 and row
4. Increasing σ from 1 to 19 produces a clustering of the points in the objective
space. One reason for this behavior is that several genotypes will map to the
same objective values. The clustering effect in the space of objectives is a direct
result of the clumpiness effect described for the NM-model when σ is increased
[9].
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Fig. 1. Objective values, Boltzmann distribution, and univariate approximations for
different values of σ and different maximum orders of interactions. Column 1: Evalua-
tion of the 210 solutions that are part of the search space for N = 10 and different values
of σ and |Uki

|. From row 1 to row 4, the figures respectively show the objective values
of the mNM model for (σ = 1, |Uki

| = 1), (σ = 1, |Uki
| = 19), (σ = 2, |Uki

| = 1) and
(σ = 2, |Uki

| = 19). Column 2: Boltzmann distributions computed from the objectives.
Column 3: Univariate approximations of the Boltzmann distributions.
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The effect of the maximum order of the interactions can be seen by comparing
the figure in row 1 with the figure in row 3, and the figures in rows 2 and 4. For
σ = 1, adding interactions transforms the shape of the Pareto front from a line
to a boomerang-like shape. For σ = 19, the 8 points are transformed into a set
of 8 stripes that seem to be parallel to each other. In both cases, the changes
due to the increase in the order of the interactions are remarkable.

In the next experiments, and in order to emphasize the flexibility of the
mNM-landscape, we allow the two objectives of the same mNM-landscape to
have different maximum order of interactions. Figure 2 shows the objective values
and Pareto fronts of the mNM model for σ = 36 for the situation in which f1
has a maximum order of interactions |Uk1

| = o and f2 has a maximum order of
interactions |Uk2

| = o + 1. It can be observed that the shapes of the fronts are
less regular than in the previous experiments but some regularities are kept.
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Fig. 2. Objective values and Pareto fronts of the mNM model for σ = 36 and different
maximum orders of interactions: Left) |Uk1 | = 1 and |Uk2 | = 2, Right) |Uk1 | = 2 and
|Uk2 | = 3.

5.2 Boltzmann distribution

Figure 1 (column 2) shows the Boltzmann probabilities associated to each mNM-
landscape model described in column 1, i.e., (p1Bi

(xi), p2Bi
(xi)).

The Boltzmann distribution modifies the shape of the objective space but it
does not modify the solutions that belong to the Pareto set. This is so because
the dominance relationships between the points are preserved by the Boltzmann
distribution. However, the Boltzmann distribution “bends” the original objective
space. This effect can be clearly appreciated in rows 1 and row 4. In the first
case, the line is transformed into a curve. In the second case the parallel lines
stripes that appear in the original objective space change direction.

The Boltzmann distribution can be used as an effective way to modify the
shape of the Pareto while keeping the dominance relationships. This can be
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convenient to modify the spacing between Pareto-optimal solutions, for more in-
formative visualization of the objective space, and for investigating how changes
in the strength of selection could be manifested in the shape of the Pareto front
approximations.

5.3 Factorized univariate approximations

Figure 1 (column 3) shows the approximations of the Boltzmann distributions
for the two objectives, each approximation computed using the corresponding
product of the univariate marginals, i.e., (q1Bi

(xi), q2Bi
(xi)). For |Uk| = 1, the

approximations are identical to the Boltzmann distribution. This is because the
Boltzmann distribution can be exactly factorized in the product of its univariate
marginal distributions. Therefore, as a straightforward extension of the factoriza-
tion theorems available for the single-objective additive functions, we hypothe-
size that if the structure of all objectives is decomposable and the decompositions
satisfy the running intersection property [11, 12], then the associated factorized

distributions will preserve the shape of the Pareto front.
However, the univariate approximation does not always respect the domi-

nance relationships and this fact provokes changes in the composition and shape
of the Pareto front. This can be appreciated in rows 3 and 4, where the univariate
approximation clearly departs from the Boltzmann distribution. Still, as shown
in row 4, some characteristics of the original function, as the discontinuity in the
space of objectives, can hold for the univariate factorization.

An open question is under which conditions will the univariate approxima-
tion keep the dominance relationship between the solutions. One conjecture is
that if the factorized approximation keeps the ranking of the original functions
for all the objectives then the dominance relationship will be kept, but this con-
dition may not be necessary. The answer to this question is beyond the scope
of this paper. Nevertheless, we include the discussion to emphasize why explicit
modeling of interactions by means of the mNM landscape together with the use
of the Boltzmann distribution is relevant for the study of MOPs.

5.4 Interactions and dependencies in the mNM landscape

By computing bivariate and univariate marginals from the Boltzmann distribu-
tion and computing the mutual information for every pair of variables we can
assess which are the strongest pair-wise interactions.

In this section we analyze how the maximum order of the interactions and
the σ parameter affect the dependencies in the Boltzmann distribution. A ref-
erence NM model with (N = 10) was generated and by varying the parameters
M ∈ {1, . . . , 9} and σ = 2i + 1, i ∈ {0, 1, . . . , 9}) we generated different mNM
landscapes. The results presented in this section are the average of 10 models for
each combination of parameters. We focus on the analysis of the dependencies
in only one of the objectives.

Figure 3 shows the values of the mutual information for the combinations
of the maximum order of the interactions and σ. When the maximum order of
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Fig. 3. Influence of the maximum order of the interactions and σ in the mutual infor-
mation.

the interactions is 1, the approximation given by the univariate factorization
is exact, therefore, the mutual information between the variables are 0 for all
values of σ. The mutual information is maximized when the maximum number
of interactions is 2. For these mNM landscapes we would expect the univariate
approximation to considerably distort the shape of the Pareto front, as shown
in Figure 1, column 3, rows 3 and 4.

Figure 3 shows that σ can be used to tune the strength of the interactions
between the variables. As σ increases the mutual information also increases.
This fact would allow us to define objectives that have interactions of the same
maximum order but with different strength.

5.5 Discussion

We summarize some of the findings from the experiments:

– Univariate factorizations are poor approximations for mNM models of max-
imum order two and higher.

– The mutual information between the variables of the NM landscape is max-
imized for problems with maximum order of interaction 2.

– The σ parameter can be used for changing the shape of the Pareto fronts and
increasing the strength of the interactions in the objectives. In particular,
there is a direct effect of σ in the discontinuity of the Pareto front and the
emergence of clusters.

6 Conclusions

We have shown how the mNM landscape can be used to investigate the effect
that interactions between the variables have in the shapes of the fronts and in
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the emergence of dependencies between the variables of the problem. We have
shown that the Boltzmann distribution can be used in conjunction with the
mNM model to investigate how interactions are translated into dependencies. A
limitation of the Boltzmann distribution is that is can be computed exactly only
for problems of limited size.

The idea of using the Boltzmann distribution to modify the Pareto shape
of the functions can be related to previous work by Okabe et al. [13] on the
application of deformations, rotations, and shift operators to generate test func-
tions with difficult Pareto sets. However, by using the Boltzmann distribution
we explicitly relate the changes in the shape of the Pareto to the relationship
interactions-dependencies determined by the Boltzmann distribution. This can
be considered as an alternative path to other approaches to creation of bench-
marks for MOPs, like the combination of single-objectives functions of known
difficulty [4] or the maximization of problem difficulty by applying direct opti-
mization approaches [19].

Our results can be useful for the conception and validation of MOEAs that
use probabilistic modeling. In this direction, we have advanced the idea that
the effectiveness of a factorized approximation in the context of MOPs may be
related to the way it preserves the original dominance relationships between
solutions. We have shown that the Boltzmann distribution changes the shape of
the fronts but does not change which solutions belong to the Pareto front.
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