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Abstract. In this paper we consider algorithms for DCOPs that require a quick
response. In this context it is important to have any-time algorithms that give fast
sub-optimal solutions and error bounds. Then the agents may consider the ur-
gency of their reaction and the quality of their current solution and decide to wait
a little longer for a likely better solution. Under this framework we propose QR, a
new algorithm that combines a tree-like relaxation with reparameterization. It im-
proves over previous tree-relaxation algorithms in that it is any-time. It improves
over lagrangian-relaxation algorithms in that it gets more accurate bounds at the
very first iterations.

Introduction

Distributed Constraint Optimization Problems (DCOP) capture combinatorial problems
distributed among a set of agents. In typical applications [7, 16, 11, 12] solving the prob-
lem directly corresponds to deciding how each agent (or a central authority) must be-
have. Thus, agents must, in the first place, solve the problem in a coordinated way, and
then carry out the corresponding actions. In this paper we consider problems that require
a quick response. This type of problems occur in dynamic situations where the agents
must react before the problem evolves and renders the current solution useless (e.g.
rescue robotics [14]) and/or in geographically distributed problems where agents have
very low computing and communication capabilities (e.g. wide-area surveillance [8] or
monitoring environmental phenomena [9]). Since DCOPs are NP-hard in general, the
main goal is then to design distributed algorithms that provide a quick near-optimal so-
lution. Additionally, it is desirable that those algorithms are any-time and they provide
a bound of their error. The conjunction of these two properties is very relevant because
depending on the urgency of their reaction and the error rate, the agents may prefer to
wait for a more accurate solution.

State-of-the-art algorithms for this type of problems usually use a Tree Relaxation
(TR) [12, 13]. Roughly, the idea is to transform the original problem into an acyclic one
which can be solved efficiently with well-known assyncronous message-passing algo-
rithms such as MaxSum [4] or other variants of the GDL framework [1] such us Belief
Propagation [10]. The optimal solution of the relaxation is taken as an approximation
of the optimal solution of the original problem. These algorithms provide a bound of
their error and have shown experimentally that they can provide reasonably accurate
solutions (typical error rates range 10-30%). Their complexity is very low, since each
agent must compute only one message and serialization is only on the diameter of the
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tree. The main disadvantage, and the motivation of our work, is that TR algorithms are
not anytime. Thus, they are unable to take advantage of additional time, if available.

As an alternative to TR, several authors have explored different iterative approaches.
Zhang et al [20] propose the Distributed Stochastic Algorithm which is a distributed
version of stochastic search. Although being distributed, the algorithm needs to iterate
a large number of times (tens or hundreds of iterations in medium size problems) be-
fore achieving good solutions, which is not acceptable to the type of applications that
we consider. Farinelli et al [4] explore the use of MaxSum in cyclic problems. Their
experiments show that MaxSum also needs to iterate a too large number of times before
convergence (sometimes it even diverges). Neither of these two algorithms can provide
quality guarantees.

Algorithms based on Lagrangian Relaxations (LR) [15] are becoming very popu-
lar in the centralized context where they have shown impressive performance in image
processing and natural language applications. Like TR algorithms, they also solve a
relaxation of the problem. In this case, the relaxation decouples the original problem
replicating variables. The relaxed problem can be solved efficiently using local opera-
tions (each factor is processed in isolation). Similarly to TR algorithms, the optimal of
the relaxation is an upper bound of the optimal. However, algorithms based on LR have
an important difference with respect to TR algorithms: relaxation is enhanced with an
iterative phase in which they transform the original problem into an equivalent, but more
explicit, one. The transformation is achieved as a sequence of so-called reparameteriza-
tions. Because reparameterization preserves the problem, solving the reparameterized
relaxation also provides an upper bound of the problem’s optimum and the goal of repa-
rameterization is to tight the bound us much as possible. Interestingly, the reparameteri-
zation can also be used to compute a potentially good assignment, which is evaluated in
the original problem producing a lower bound. Consequently, LR algorithms can also
bound the error and provide quality guarantees.

In the centralized setting, the importance of early iterations of LR are disregarded.
The reason is that in that context the urgency of response is not as dramatic. A central
CPU can run hundreds or thousands of iterations fairly quickly and convergence is
usually achieved before that. Apart from [17, 5], LR algorithms have received little
attention in the multi-agents field. This may come to as a surprise, since they also have
a natural assyncronous message passing implementation.

In this paper we show that LR can be useful in DCOP, even in problems that require
a quick response. Our first contribution is to show that one does not need to wait until LR
algorithms converge. On the contrary, we show that just after the very firsts iterations
LR algorithms may already provide fairly accurate solutions. The second and main
contribution is a new algorithm that combines reparameterization with a tree relaxation.
The algorithm inherits the best of each world: it is any-time, provides error bounds and,
most importantly, provides very accurate solutions in a very small number of iterations.
Our experiments show that the combination outperforms both LR and TR.

Our work differs from [20, 4, 17] in that we specifically focus on quick accuracy. It
is clear that our algorithm shares elements to [17], but has several advantages: it gets
better bounds at the earliest iterations (due to a better reparameterization rule and a
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stronger tree-based relaxation) and it has no parameters to be tuned before-hand (due to
a more robust updating rule).

Preliminaries

A Constraint Optimization Problem (COP) is a tuple (X,D,F ), whereX = {x1, . . . , xn}
and D = {d1, . . . , dn} are variables and their (finite) domains. The objective function
to be optimized is

F (X) =

r∑
j=1

fj(X
j)

Each fj is called a factor 1 over a subset Xs ⊆ X of the variables. It associates values
to the possible assignments of its scope Xj . A solution is a complete assignment X .
The goal in a COP is to find an optimal solution, which is a solution X∗ such that

∀X, F (X∗) ≥ F (X)

Finding the optimal solution of a COP is in general an NP-hard problem [3]. A usual
assumption is that factors in isolation can be processed efficiently including at least the
computation of their local optima maxXj fj(X

j), and their marginals

z(xi) = max
Xj−{xi}

fj(X
j)

The factor graph of a COP instance (X,D,F ) is a bipartite graph with two types
of nodes: variable and function nodes. There is one variable node for each variable
xi ∈ X and one factor node for each local function fj . There is an edge connecting
variable node xi to factor node fj if xi is an argument of fj (i.e, xi ∈ Xj).

In a Distributed COP (DCOP) the problem is distributed among a set of agents.
Each agent knows some of the cost functions along with their variables and domains. In
the DCOP environment, the agents must search for the optimum via decentralized coor-
dination. Each agent can communicate with a (small) number of neighbors. In this paper
we make the usual assumption of making a one-to-one mapping between cost functions
and agents. Two agents are neighbors if their functions have a common variable in their
scope.

The factor graph of a DCOP instance is a very convenient tool for identifying its
complexity. It is well-known that when the graph is acyclic, the problem can be solved
very efficiently with a number of algorithms. If the graph is cyclic, the cost of solving
the instance is exponential on its degree of cyclicity. There are several measures of
cyclicity, such as the tree or induced width which are essentially equivalent [3].

Tree-relaxation Algorithms

Tree-relaxation algorithms (TR) like BMS [12] or IBMS [13] are approximation algo-
rithms with very low overhead. They relax the original problem transforming it into a
tree, which can be solved efficiently.

1 Factors are also called utility or cost functions.
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Algorithm 1 shows a detailed algorithmic description of a generic tree relaxation al-
gorithm. First (line 1), the algorithm computes a tree T from the original factor graph by
removing some dependencies among functions and variables. Generally, it heuristically
measures the impact of removing each dependency in the optimal solution and then it
removes the ones with less impact. Next (line 2), the original problem P is transformed
into an acyclic one (A,X,D, FT ) having the spanning tree as factor graph. In IBMS
the transformation is done as follows: For each edge (i, j) in the original graph that
does not belong to the tree, the cost function fj is transformed into another function f ′j
with X ′j := Xj − {xi} as,

f ′j(X
′j) := max

xi

{fj(Xj)}

Then (line 3), the algorithm solves maxX{FT (X)} efficiently with one of the many
available algorithms. Let XT be the solution. Finally, the algorithm returns XT as a
sub-optimal solution for the original problem P , F (XT ) is a lower bound of the true
optimum, and FT (XT ) is an upper bound.

Lagrangian-relaxation Algorithms

Lagrangian-relaxation algorithms (LR) like MaxSum Diffusion (MSD) [19] or Factor
Graph LP (FGLP) [6] are iterative methods. In the COP context, they work by combin-
ing two ideas: reparameterization and relaxation.

The relaxation used by these methods is extremely simple. The idea is to replicate
each variable xi once for each factor fj(Xj) where it occurs. Let X ′ denote the aug-
mented set of variables and FL(X ′) its augmented relaxation objective function. When
solving FL(X ′), unlike in the original problem, one can introduce the maximization
inside the summation which gives,

max
X′
{FL(X ′)} =

r∑
j=1

max
Xj
{fj(Xj)}

This is assumed to be efficiently solvable by local computations. Clearly, the solution
of the relaxation is an upper bound of the optimum of the original problem.

As a stand alone technique, it is obvious that this is a very weak relaxation, and LR
algorithms thight the bound with a reparameterization pre-process. Reparameterization
can be nicely explained in terms of the so-called dual variables δ. For every scope Xj ,
every variable xi ∈ Xj and every value in its domain, a variable δij(xi) is defined.
Then, the original objective function F (X) is re-phrased as

F (δ,X) =
∑
xi

(
∑
j∈Mi

δij(xi)) +

r∑
j=1

(fj(X
j)−

∑
xi∈Xj

δij(xi))

where Mi = {j | xi ∈ Xj} is a vector of function indexes, indicating which functions
contains xi in their scope.
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Algorithm 1: Generic Tree Relaxation
Input : A DCOP problem P = (A,X,D, F ).
Output: An sub-optimal solution, a lower bound, and an upper bound of P .

1 T ← ComputeTree(P);
2 FT ← TreeRelaxation(F, T);
3 (XT , ubT )← Solve(FT (X));
4 lbT ← F (XT );
5 return (XT , lbT , ubT );

Algorithm 2: Generic Lagrangian Relaxation
Input : A DCOP problem P = (A,X,D, F ), and an integer value k.
Output: A sub-optimal solution, a lower bound, and an upper bound of P .

1 F (δ,X)← Rephrase F using dual variables δ;
2 Initialize all δ to 0;
3 repeat
4 Update(δ);
5 FL(δ,X ′)← LagrangianRelaxation(F (δ,X));
6 (X ′L, ubL)← Solve(FL(δ,X ′));
7 for xi ∈ X do XL

i ← argmaxxi

∑
j∈Mi

δij ;
8 ;
9 lbL ← F (XL);

10 k ← k − 1;
11 until fixed point or k = 0;
12 return (XL, lbL, ubL);

Algorithm 3: Quick Response
Input : A DCOP problem P = (A,X,D, F ), and an integer value k.
Output: A sub-optimal solution, a lower bound, and an upper bound of P .

1 T ← ComputeTree(P);
2 F (δ,X)← Rephrase F using dual variables δ;
3 Initialize all δ to 0;
4 repeat
5 Update(δ);
6 FQ ← TreeRelaxation(F ∪ δ, T);
7 (XQ, ubQ)← Solve(FQ(X));
8 lbQ ← F (XQ);
9 k ← k − 1;

10 until fixed point or k = 0;
11 return (XQ, lbQ, ubQ);
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The key property of F (δ,X) is that, no matter which values take the reparameteri-
zation variables, it is equivalent to the original problem (namely F (X) = F (δ,X) for
all δ). Consequently,

∀δ, max
X
{F (X)} = max

X
{F (δ,X)}

The Lagrangian function is

L(δ) = max
X′

FL(δ,X ′)

and the goal is to find the reparameterization that produces the best relaxation, that is,
to find δ∗ such that,

L(δ∗) = min
δ
L(δ)

or, equivalently,

L(δ∗) = min
δ
{
∑
xi∈X

max
xi

{
∑
j∈Mi

δij(xi)}+
r∑
j=1

max
Xj
{fj(Xj)−

∑
xi∈Xj

δij(xi)}}

which is the dual optimization problem. The weak duality property, L(δ∗) ≥ F (X∗),
is direct.

LR algorithms optimize L(δ) using iterative methods usually inspired in the sub-
gradient and coordinate descent methods [2]. Algorithm 2 shows the pseudo-code of
a generic Lagrangian relaxation algorithm. Initially, the algorithm computes the La-
grangian of the original problem P (line 1), and sets dual variables to zero (line 2).
Then, the algorithm iterates until convergence (or time out). At each iteration dual vari-
ables are updated (line 4) using some reparameterization rule. Under a message passing
point of view, δi,j(xi) may be interpreted as a message that factor fj sends to vari-
able xi about its belief on the different values of xi being in the optimal solution. After
reparameterization, the Lagrangian-relaxation FL(δ,X ′) is computed (line 5) and ef-
ficiently solved (line 6). The optimum of the relaxation is the current iteration upper
bound ubL. Dual variables are also used to compute the current sub-optimal assign-
ment XL (lines 7) as,

XL
i := argmax

xi

∑
j∈Mi

δij(xi)

Finally, F (XL) (line 8) is the current lower bound.

Combining Reparameterization and Tree relaxation

Now we evaluate the performance of the first iterations of the generic Lagrangian re-
laxation algorithm (Algorithm 2) with two different reparameterization schemas that
have shown good performance in the centralized context. We do not include a pure sub-
gradient method because it has been extensively observed that its convergence is much
slower than the alternative coordinate descend updates considered here [15].

Let αij(xi) = maxXj−{xi}{fj(Xj)−
∑
i′∈Xj δi′j(xi′)}. Then, the reparameteri-

zations considered in this paper are:
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Fig. 1. Evolution of the upper and lower bound as a function of the number of iterations for the
generic Lagrangian-relaxation algorithm using FGLP and MSD updates.

– Factor Graph LP (FGLP) [6], the algorithm computes for all (i, j),

δij(xi) := αij(xi)−
1

|Mi|
∑
j′∈Mi

αij′(xi)

– Max-Sum Diffusion (MSD) [19], the algorithm computes for all j, j′ such that
Xj ∩Xj′ 6= ∅,

δij(xi) :=
1

2
(αij′ − αij)

δij′(xi) :=
1

2
(αij − αij′)

We consider the same set of problems from the ADOPT repository2 used in [12] as
well as random problems varying the number of agents in the range {10, .., 100} , each
variable having 3 domain values, and two different constraint densities p = 0.2 and
p = 0.6. The costs of the constraints are uniformly generated in the range {1, .., 10}.
For each configuration, we generated 25 instances. In the following, for each algo-
rithm, we report its upper and lower bound evolution. For comparison purposes, we

2 http://teamcore.usc.edu/dcop
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Fig. 2. Evolution of the upper and lower bound as a function of the number of iterations for the
QR and generic Lagrangian relaxation algorithm using the FGLP update.

also report the true optimum (Opt) when the problem can be solved exactly with some
centralized/distributed complete algorithm. We only report on the following instances:
GAMMA link density 2 and UNIFORM link density 3 with 40 agents, and random with
p=0.2 and p=0.6 with 50 agents. We omit results on other classes of problems, since the
behaviour pattern is very similar.

Figure 1 reports results of the 7 initial iterations. Our first observation is that FGLP’s
update clearly outperforms MSD’s from the earliest iterations and this seems to be
the case systematically over all classes of problems where we performed experiments.
Our second observation is that the two algorithms show a typical behaviour of iterative
methods. The quality of the bounds at the first steps is poor but it improves very quickly
once the reparameterization starts tighting the relaxation.

As we discussed before we are not so interested in the quality of bounds at conver-
gence, but at the earliest iterations, where iterative methods may not be so good because
the reparameterization has not yet been able to tight the relaxation. At these first iter-
ations it seems reasonable to rely on the stronger tree-like relaxation. This is the idea
of our Quick Response (QR) algorithm (see Algorithm 3). The algorithm iterates until
time out. At each iteration one reparameterization step is computed using the updating
rule of choice (line 5). Then the tree relaxation is computed with the reparameterized
problem (line 6) and the tree-like problem is solved (line 7) resulting into a sub-optimal
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solutionXQ and an upper bound ubQ of the original problem. The sub-optimal solution
is used to compute a lower bound F (XQ) (line 8).

Figure 2 reports the any-time behaviour of QR using FGLP’s reparameterization
rule. We compare it with the FGLP Lagrangian-relaxation’s version discussed in the
previous section. As can be seen QR and FGLP improves over time. Moreover, QR
outperforms both IBMS and FGLP along the first iterations and, in particular, at the
first and second ones. This means that QR on the first iteration provides quite accurate
solutions within a small approximation ratio which indicates that this algorithm seems
suitable for situations where a quick-response in needed.

Conclusion and Future Work

In this paper we have focused on DCOPs that require a quick response. We have dis-
cussed the importance of any-time algorithms that provide an error bound. We have
introduced an algorithm that combines two elements: tree relaxation and reparameteri-
zation. Our experiments indicate that this is a promising approach.

In our current implementation we only have reparameterization rules that were de-
signed to work well with Lagrangian relaxations and we found quite surprising that
they worked well with a tree relaxation. In the future, we want to develop updating
rules especialized for the tree-relaxation. Probably, analyzing tree-reparameterization
algorithms [18] developed in the centralized context are a good starting point for the
continuation of our work.
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