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Abstract. This work introduces DXPCS, a software tool performing model-
based diagnosis of continuous dynamic systems whose models can be represented
as a set of Algebraric/Ordinary Differential Equations. The diagnosis approach
implemented is based upon the Possible Conflict (PC) concept. DXPCS is mainly
intended for educational purposes, providing a complete package to show the Ar-
tificial Intelligence approach to model-based diagnosis for postgraduate students.
Given a set of equations, together with structural information about the model,
DXPCS is able to automatically build simulation models for each PC, it can han-
dle both single-fault and multiple-fault scenarios, for both parametric and additive
faults. Different options for fault detection, residual generation and evaluation
can be chosen. The software architecture and the software performance for one
simple case study, are provided in this paper.
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1 Introduction

Model-based diagnosis fundamentals rely upon the idea of comparing the estimated be-
haviour of a system, given a model, with real observed behaviour. Since the early days
of model-based diagnosis there have been software tools implementing different diag-
nosis proposals [8]. Such trend is still active and nowadays several tools are available
to test recent proposals in the field, from both the Artificial Intelligence –Raz’r [16],
TRANSCEND [11], Squal-track [1], LyDIA-NG [6], Hyde [12]–, and the Control The-
ory communities – Symbols [2], FlexDx [9], or other Matlab toolboxes [7]–. Moreover,
several tools have focused only on the structural aspects of the model-based diagnosis
process, related to find the set of over-determined submodels1 required to perform the
fault detection and isolation stages.Later on, those submodels can be used to estimate
system behaviour as simulation or state-observer models, for instance.

This work introduces DXPCS, Diagnosis with Possible Conflicts, which imple-
ments a comprehensive equation-based approach to model-based diagnosis, including
fault detection and isolation capabilities for continuous systems diagnosis. The models
must be made up of a set of Algebraic and/or Ordinary Differential Equations, ADEs

1 An over-determined set of equations provides analytical redundancy, which is the essence of
model-based diagnosis.
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or ODEs for short, the sets of input and output measurements, together with a descrip-
tion of the set of state and intermediate variables, and the set of parameters related to
faults. DXPCS is able to generate an input/output model given the set of ADEs/ODEs.
Such model can be later used to generate the set of Possible Conflicts, or PCs for short,
that are the basis for the diagnosis approach. The tool is capable to generate new exe-
cutable submodels, one for each PC. An additional feature is that DXPCS can generate
a set of diagnosis scenarios with varying input conditions, for both nominal and faulty
situations. These scenarios can be stored or studied in a consistency-based diagnosis
framework using PCs. As a consequence, DXPCS provides a complete package in-
tended mainly for educational purposes for postgraduate students.

The rest of the paper is organized as follows. First we introduce the main concepts
underlying the diagnosis approach implemented in DXPCS, and a case study. Later on
we summarize the main functionalities of DXPCS. Finally, we discuss DXPCS features
against related work.

2 The diagnosis approach

In this section we summarize consistency-based diagnosis using PCs, together with a
running example that will be used to illustrate how DXPCS works.

In this work we will only talk about dynamic continuous systems, with both nominal
and faulty states, and whose behaviour is described by the following kind of model.

Definition 1 (Model). The system model is defined as M(Σ,U, Y,X,Z,Θ), where: Σ
is a set of ADEs/ODEs, defined over a collection of known and unknown variables: U
is the set of inputs, Y is the set of outputs, X is the set of state variables, and Z is the
set of intermediate variables. Finally, Θ is the set of parameters2.

An implicit assumption in our modelling approach is that we can use the same set of
equations for both the nominal and the faulty behaviour estimation, just changing the
value of some model parameters: θi ∈ Θ.

In this work, we will use the three-tank system shown in Fig. 1 as a running example.

hT1
* hT2

* hT3
*

Qi

hT1 hT2 hT3

Fig. 1: Diagram of the three-tank system.
2 Since we are dealing with fault diagnosis, in our model we are mainly interested in every

parameter suitable to model faulty behaviour.
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The three identical tanks are denoted as T1, T2, and T3. Qi is a measured input flow for
tank T1, which is drained into T2 via pipe with flow q1. The liquid level is denoted as
hT1. A similar process gets the flow from T2 to T3 via pipe with flow q2. Finally, there
is an output flow q3 from T3. Tanks height are measured by sensors {hT ∗

1 , hT
∗
2 , hT

∗
3 }.

The following set of ADEs models the behaviour of the system. The change in the
height in each tank, d_hTi, is computed according to mass balances:

d_hT1/dt = (Qi − q1 − qf1)/A1 (1)

d_hT2/dt = (q1 − q2 − qf2)/A2 (2)

d_hT3/dt = (q2 − q3 − qf3)/A3 (3)

Flows between tanks, qi, and leakage flows, qfj are modelled using the following
equations, where parameters StuckTi and LeakageTi are used to model blockages in
pipes and tank leakages, respectively. In this way, we handle both additive and multi-
plicative faults in the model.

q1 = StuckT1 ×
√
| hT1 − hT2 |/Rv1 (4)

qf1 = LeakageT1 ×
√
hT1 (5)

q2 = StuckT2 ×
√
| hT2 − hT3 |/Rv2 (6)

qf2 = LeakageT2 ×
√
hT2 (7)

q3 = StuckT3 ×
√
| hT3 |/Rv3 (8)

qf3 = LeakageT3 ×
√
hT3 (9)

It is assumed that the initial water level in the three tanks is zero, but this can be
changed using an initial condition file for the simulation. Additionally, we make ex-
plicit the relation between the state variables, hTi in our example, and their derivatives
d_hTi, through equations (10), (11), and (12), for tanks Ti with i = 1, 2, 3. These three
equations allow us to select an integral or differential approach for behaviour simu-
lation, depending on the selected causality. These equations will not introduce faulty
behaviour in the system, because they have no θi ∈ Θ.

hTi =

∫
d_hTi · dt (10), (11), (12)

Finally, the observational model Y, relates unknown and measured variables through
equations (13), (14), and (15), for tanks Ti with i = 1, 2, 3.

hT ∗
i = hTi (13), (14), (15)

2.1 Consistency-based diagnosis with PCs

As previously mentioned, model-based diagnosis uses one model of the system to es-
timate expected correct behaviour. This behaviour is compared against available obser-
vations looking for a discrepancy or residual signal, which is used for fault detection
and isolation purposes, and it is formally defined as follows:

Definition 2 (Residual). A residual is a real-valued measureR(yi, ŷi) of the difference
between real and estimated system output at time t.
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The goal of the diagnosis system is to determine the health status of every parameter
in the model: θi ∈ Θ to be ok or faulty.

Definition 3 (Diagnosis). A diagnosis for the system is made up of (M,Π), where

– M(Σ,U, Y,X,Z,Θ) is a system model, and:
– Π is a mapping function: Θ → {ok, faulty}n.

Consistency-based Diagnosis, or CBD, only requires correct behaviour models to
perform fault detection and isolation3. The process is organized around the conflict con-
cept [8], corresponding to a discrepancy detection. Faulty candidates can be computed
as the minimal-hitting sets of those components, or correctness assumptions linked to
them, involved in conflict detection. This work relies upon Possible Conflicts [14], or
PCs, to avoid on-line computation of the set of correctness assumptions in conflicts. PCs
are designed to find off-line those subsystems capable of becoming conflicts online.

To compute the set of PCs we require an abstraction of M(Σ,U, Y,X,Z,Θ): the
structural model that only relates constraints and variables in the equation models. Ac-
cording to [14] the structural model HSD = {V,R}, where V is the set of variables,
and R is the set of relations among those variables:

– V = OBS ∪ NOBS; OBS = U ∪ Y , is the set of observed or measured
variables, and NOBS = X ∪ Z , is the set of internal variables;

– R = {r1, . . . , rk}, where each ri abstracts a relation among variables vi ⊆ V , as
described by each equation σi ∈ Σ.

PCs computation proceeds in two steps:

1. Searching for any minimally overdetermined subsets of equations in HSD. Each
subset is called a Minimal Evaluable Chain, or MEC, and does not include any
information about potential causal assignments for each relation rk in MECs.

2. For each MEC, every potential causal assignment for each rk is considered. If there
is, at least, one globally valid causal assignment, it is called a Minimal Evaluable
Model, or MEM.

Each MEM represents a set of overdetermined sets of equations with minimal analytical
redundancy. Hence, it can be used to perform fault detection. Each MEM can be imple-
mented either as a simulation or state-observer model and the global causal assignment
allows to track exactly one observed variable in the original system model.

Definition 4 (Possible Conflict). The set of constraints in a MEC that gives rise to at
least one MEM is a Possible Conflict.

We are only interested in those equations containing parameters that can be used to
model faulty behaviour. Hence, we associate to each PCk the set of parameters, Θk ⊆
Θ, that appears in the original equations described by each MEMk. If we consider that
each θki

∈ Θk can have either ok or faulty values, they can be considered as the set

3 Parameters for modelling stuck pipes or leakages are included in DXPCS to simulate diagnosis
scenarios.
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of correctness assumptions for each PC. Once a MEM tracking the behaviour of one
subsystem detects a discrepancy, its corresponding PC is activated as a real conflict.
Afterwards, we can obtain the set of fault candidates as the minimal hitting-set of their
sets of correctness assumptions.

The set of PCs for the three tank system is shown in Table 1.

Table 1: Set of PCs for the three tank system. Parameters STi and LTi applies for
StuckTi

, and LeakageTi
respectively.

PC Equations Parameters Output
PC1 {1, 4, 5, 10, 13, 14} {ST1 , LT1} hT 1

∗

PC2 {2, 4, 6, 7, 11, 13, 14, 15} {ST1 , LT1 , ST2 , LT2} hT 2
∗

PC3 {3, 6, 8, 9, 12, 14, 15} {ST2 , LT2 , ST3 , LT3} hT 3
∗

3 DXPCS architecture

DXPCS is a model-based reasoning tool that implements consistency-based diagnosis,
CBD, of continuous dynamic systems. The basis for model-based reasoning is a system
model, M , as defined above, which is given as input.

DXPCS integrates several packages that previously worked independently to per-
form fault detection and isolation, or that previously required human manipulation of
the models[13, 15, 4, 3, 5]. DXPCS organizes the diagnosis process around the struc-
tural description for each PC, derived from M . This description must be provided as an
additional input (this file can be automatically generated using the available Java tool
for computing PCs [10]4).

3.1 Functional architecture

DXPCS conceptual model is summarized in Figure 2:

Fig. 2: Conceptual model of DXPCS software architecture.

4 http://www.infor.uva.es/~belar/SoftwareCPCs/PCs3.0_Setup.exe
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– It is able to generate Matlab simulation models, for both the complete set of ODEs,
and for the PCs structural models.

– It can simulate different nominal and fault scenarios –including single and multiple
parametric or additive faults–, with noisy time-varying input signals.
These results can be visualized or stored in a file or a Data Base, for later use in the
diagnosis module.

– The diagnosis module implements a PC-based approach for continuous systems,
including fault detection and localization capabilities. Diagnosis results can be vi-
sualized or stored in a different Data Base.

3.2 From state-space equations to PCs simulation models

Once the user chooses the Load model command, she/he must provide the required sys-
tem description or System Model made up of the following files: the set of ADEs/ODEs,
the set of state variables, X , the set of fault parameters, Θ, and the set of input, U , and
output, Y , measurements. Afterwards, the DXPCS interface will look like the left-hand
side in Figure 3, where the system model for the three tank case study has been loaded.
As it can be seen, the model is made up of a set of equations involving algebraic ex-
pressions between internal, state and input variables. Matlab functions, such as sqrt()
or abs(), can also be used. These equations correspond to the instantaneous constraints
in the model, providing a valid causal assignment that can be used to simulate the com-
plete system behaviour. They correspond to equations (1) to (9) in Section 2.

Fig. 3: Given a behavioural model as a set of ADEs, DXPCS is able to automatically
generate the structural model, required to compute the set of Possible Conflicts.

There is no explicit presence of the time index. Later on, depending on the sim-
ulation method, they will be completed with one additional equation for each state
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variable: in the model in Figure 3 there are three state-variables: {hT1, hT2, hT3},
therefore there must be an explicit equation to model the transient behaviour for each
state-variable. For instance, the instantaneous change in the state-variable hT1 is mod-
elled by equation (1), which explicitly includes its change over time, d_hT1:

d_hT1 = (Qi− q1− qf1)/AT1

Finally, the value of output variables –i.e. the observational model– must be explic-
itly included. For instance, if hT1 is measured, its corresponding output equation is
HT1mes = hT15. These are equations (13) to (15) in Section 2.

As can be seen in the left hand side of Figure 3, equations (10) to (12) are not
included, since they depend on the particular inference engine, and they will be added
automatically by the tool.

It should be noticed that DXPCS right now does not perform any syntactic or numer-
ical analysis in the model. We assume that the model is correct and it is parameterized
accordingly for the diagnosis stage.

If we choose the Convert option, the ODE description of the system will be con-
verted to the input-output notation that can be seen in the right-hand side of Figure 3.
This is the structural model, hence it only contains the name of the equation and the
name of the state and internal variables involved in the equation. For each equation,
there must be at least a causal interpretation. The default causal interpretation is given
in the ADE/ODE file. If we want to include other optional causal assignments, we can
edit the structural model and include them by hand. Such structural model is the input
for the tool that compute the set of PCs, CPCVall [10].

3.3 Generation of PCs simulation models

This option creates a simulation model for each PC, given the system description and
the PCs structural models.

Figure 4 shows on the left-hand side both the complete System Model, and the Struc-
tural Model for each PC found in the system.

On the right-hand side of the figure we can observe the set of equations required
to simulate PC1, PC2, and PC3, in the case study example. The subset of equations
have been ordered according to the structural model. The last equation is the com-
putation of the only output variable in the system: hT ∗

1 for PC1, hT ∗
2 for PC2, and

hT ∗
3 for PC3. The comparison of these values against those provided by the simu-

lation will define the set of discrepancies or residuals in our diagnosis system. Each
PCi will be sensitive only to those θpci ∈ Θ. For instance, PC1 is sensitive to faults
{StuckV 1, LeakageT1}, representing a blockage in valve V 1, and a leakage at the
bottom of tank T1, respectively.

3.4 Studying different diagnosis scenarios

Before we proceed to the diagnosis stage, it is necessary to generate different diagnosis
scenarios. DXPCS is able to simulate the System Model in different working conditions:

5 We use the HT1mes notation in Matlab instead of the hT ∗
1 notation to avoid confusion be-

tween asterisk and multiplication operator.



108 Belarmino Pulido et al.

Fig. 4: Given the structural model, and the set of Possible Conflicts, DXPCS is able to
automatically generate the simulation model for each Possible Conflict.

– We can generate or use an input file with different kind of signals for every variable
ui ∈ U : with or without noise, fixed or periodically changing values. We must also
set the simulation period, and the mean value for each input variable, ui ∈ U .

– Fault profiles for each scenario are very simple. Single and multiple fault scenar-
ios are allowed. We must provide the time instant, the ordinal number i for faulty
parameter θi ∈ Θ, and the fault magnitude.

– Finally, the initial conditions for simulation must be provided: the value of the state
variables for the initial integration step, and the nominal value for each θi ∈ Θ

Once the scenario is defined, DXPCS relies upon Matlab to perform the simulation
of the whole system model for the entire simulation period. The results are stored in a
text file or in an application specific Data Base.

To perform a Diagnosis experiment, we must first load a system model, then load
the set of PC models that we want to use in the experiment, and then load a diagnosis
scenario. It should be noticed that real data can be used as an input. The only current
requirement is to be stored in the scenario data base with the proper format. In this
current version DXPCS does not include any automatic filtering for the input data. This
could be included as part of the system model if needed.

Once the input data are available, both the residual generation algorithm and the
fault detection policy can be customized. For instance, we can select a basic Euclidean
distance for residual generation, together with an statistical test for residual activation
(in our case we use a customized z-test).

Once those parameters are set, the system run the PC simulation models using as
inputs the diagnosis scenario outputs. In every simulation step a residual is computed,
and the residual analysis is performed. Whenever a residual activation is triggered, the
set of faulty components are computed using an incremental version of the minimal-
hitting set algorithm. Results for a T1 leakage are shown in Figure 5.
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Fig. 5: DXPCS interface for a diagnosis experiment: evolution of measured and esti-
mated variables, residual computation and fault diagnosis candidates.

4 Discussion

DXPCS is a Java tool able to simulate different diagnosis scenarios, and to perform
consistency-based diagnosis of continuous systems using Possible Conflicts. DXPCS
is equation oriented, and currently requires the presence of the Matlab environment in
order to perform numerical simulation.

DXPCS is rather similar to traditional FDI approaches [7] –except for the kind
of structural decomposition method and the residual generation–, but different from
other tools relying upon other modelling approaches such as Bond-Graph [2, 11] or
component-oriented modelling approaches [16].

Currently DXPCS is able to perform diagnosis using pure numerical simulation, but
it is straightforward to generate state-observers given the set of PCs, and to implement
them as particle-filters. As a consequence, it is different from other tools relying upon
some kind of qualitative simulation or estimation (such as Raz’r [16], or TRANSCEND
[11]), or interval-based simulations, such as Squal-track [1].

The current software framework does not allow hybrid behaviour modelling (as
in TRANSCEND [11], LyDIA-NG [6], or Hyde [12]). As further work we plan to
extend the models to a certain type of hybrid systems models, compatible with the
hybrid Possible Conflicts approach to hybrid systems diagnosis [3], and also will be
extended to introduce fault prognosis capabilities. Additional capabilities regarding on-
line diagnosis coupling DXPCS with a real-time data base will be included too.
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