
A Probabilistic Automata Framework for
Behavioral Recognition

José L. Montaña1, Cristina T̂ırnăucă1, Carlos Ortiz–Sobremazas1, and
Santiago Ontañón2

1 Universidad de Cantabria, Santander, Spain
{joseluis.montana, cristina.tirnauca, carlos.ortizsobremazas}@unican.es

2 Drexel University, Philadelphia, USA
santi@cs.drexel.edu

Abstract. We propose a framework based on probabilistic automata
for the problem of behavioral recognition. This framework has a general
purpose and the only hypothesis is that we can observe and represent the
environment and the actions describing a behavior using a finite alphabet
of symbols. The experiments performed support the idea that a proba-
bilistic automaton with fully observable states can recognize behaviors
that have some degree of randomness, but is unable to discriminate be-
tween strategies with some degree of randomness and their underlying
deterministic variant.

1 Introduction

Imagine some agent (human, robot,...) who performs a task following some
planned strategy. In our formulation of the problem of behavioral recognition
we want to discover the task and/or the strategy the agent is using just by ob-
serving the actions it performs. We think that this point of view is general enough
to deal with relevant specific applications such as: masquerade detection in com-
puter intrusion, analysis of the task performed by the user in some e-learning
activity, classification and prediction of the user’s behavior in a web-user in-
teraction process and, more generally, activity recognition. The aim of activity
recognition is to recognize the actions and tasks of one or several agents taking
as input a sequence of observations of their states and actions. Most research
in activity recognition concentrates in the recognition of human activities. One
goal of human activity recognition is to provide information on a user’s behavior
that allows computing systems to proactively assist users with their tasks. Since
the early 1990s, this research field has been applied to many different areas such
as medicine, human-computer interaction, psychology and sociology (see [1] for
a tutorial-survey).

We propose to deal with the behavioral recognition problem using the frame-
work and technical machinery of Learning from Observation (LfO) (see [2] for
an unified presentation of the subject). Probably one of the first papers in this
field is due to Bauer: in [3] he learns programs from example executions, which

92 José L. Monta et al.

basically amounts to learning strategies to perform abstract computations by
demonstration, an approach that was especially popular in robotics [4]. Another
early mention of LfO comes from Michalski et al. [5], who defines it merely as
unsupervised learning. Gonzalez et al [6] discussed LfO at length, but provided
no formalization nor suggested an approach to realize it algorithmically. More
recent work on the more general LfO subject came nearly simultaneously but
independently from Sammut et al [7] and Sidani [8]. Fernlund et al. [9] used
LfO to build agents capable of driving a simulated automobile in a city en-
vironment. Pomerleau [10] developed the ALVINN system that trained neural
networks from observation of a road-following automobile in the real world. Mo-
riarty and Gonzalez [11] used neural networks to carry out LfO for computer
games. Könik and Laird [12] introduced LfO in complex domains with the SOAR
system by using inductive logic programming techniques. Other significant work
done under the label of learning from demonstration has emerged recently in
the case-based reasoning community. Floyd et al. [13] present an approach to
learn how to play RoboSoccer by observing the play of other teams. Ontañón
et al. [14] use learning from demonstration in the context of real-time strategy
games in the context of case-based planning. Finally, another related area is that
of inverse reinforcement learning [15], where the focus is on reconstructing the
reward function given optimal behavior (i.e., given a policy, or a set of trajec-
tories). One of the main problems here is that different reward functions may
correspond to the observed behavior, and heuristics need to be devised to only
consider families of reward functions that are interesting.

2 Behavioral Recognition from Observation

In behavioral recognition from observation there is a learning agent A that
observes one or several actors performing a task T in an environment E and
recording the actor’s behavior in the form of traces. Then, those traces are used
to discover some properties of the behavior, for instance the particular task T or,
for the same task, the kind of strategy the actor is using to perform T . Most LfO
work assumes that the agent does not have access to a description of T during
learning, and thus, the features of the task and the way it is achieved must be
learned purely by unobtrusive observation of the behavior of the actor. Let BC be
the behavior of an actor C. By behavior, we mean the control mechanism, policy,
or algorithm that an actor or learning agent uses to determine which actions to
execute over time. Our formalization is founded on the principle that behavior
can be modeled as a stochastic process, and its elements as random variables de-
pending on time. Our model includes the following variables: the learning agent
observes the environment state via an input random variable Xt. The actions
executed at time t are represented by a control random variable Yt. We will use
the following convention: if Xt is a variable, then we will use a calligraphic X
to denote the set of values it can take, and lower case x ∈ X to denote specific
values it takes. Depending on the type of the task to be recognized, the actions of
the actor can vary in nature. In our framework, we assume that the random vari-

Actas de la XVI Conferencia CAEPIA, Albacete Nov 2015 93

ables Xt and Yt are multidimensional discrete variables. The behavior BC of the
actor C can be interpreted, therefore, as a stochastic process I = {I1, ..., It, ...},
with state space I = X × Y, where It := (Xt, Yt) . In a particular execution, a
behavior BC is manifested as the series of actions that the actor executes over
time, which we call a learning trace (LT). An LT O = [(x1, y1), ..., (xm, ym)]
observed by the learning agent A can be seen as the realization – also trajectory
or sample path – of the stochastic process corresponding to the behavior of the
actor C. The pair of variables Xt and Yt represent the observation of the learning
agent A at time t.

2.1 Probabilistic Automata (PAs)

Although PAs have been introduced since the 60s by M. O Rabin (see [16]), they
are still used in several fields of science and technology for modeling stochastic
processes such as DNA sequencing analysis, image and speech recognition, hu-
man activity recognition and environmental problems among others. A reference
covering the basic PA properties and explaining the relations with other Marko-
vian models is [17].

Formally, a PA (with finite states) is a 5-tuple A = (Σ,Q, φ, ι, γ) where Σ is a
finite alphabet (that is, a discrete set of symbols), Q is a finite collection of states,
φ : Q × Σ × Q −→ [0, 1] is a function defining the transition probability (i.e.,
φ(q, a, q′) is the probability of emission of symbol a while transitioning to state q′

from state q), ι : Q −→ [0, 1] is the initial probability function and γ : Q −→ [0, 1]
is the final probability function. In addition, the following functions, defined
over words α = (a1, . . . , am) ∈ Σ∗ and state paths π = (q1, . . . , qm) ∈ Q∗, must
be probability distributions (Equation (1) when using final probabilities and
Equation (2) otherwise):

PA(α, π) = ι(q1)

(
m−1∏
i=1

φ(qi, ai, qi+1)

)
γ(qn) (1)

P̂A(α, π) = ι(q1)

m−1∏
i=1

φ(qi, ai, qi+1) (2)

This implies in particular that the two following functions are probability
distributions over Σ∗:

PA(α) =
∑
q,q′

ι(q)φ(q, α, q′)γ(q′) (3)

P̂A(α) =
∑
q,q′

ι(q)φ(q, α, q′) (4)

Here φ(q, α, q′) is the extension of function φ to words with the obvious meaning:
the probability of reaching state q′ from state q while generating word α, PA is
the probability of generating word α and P̂A is the probability of generating a

94 José L. Monta et al.

word with prefix α (see [17] for a detailed explanation of Equations (3) and (4)).
In many real situations we are interested in PAs with no final probabilities, and
in this case we use Equation (4).

2.2 Behavioral Recognition Methodology based on PAs

Suppose that T = {T1, T2, ..., Tn} is a set of tasks that can be performed by an
actor executing actions chosen from a finite set Y in a given environment X . For
each task Tk, we have an LT Ok with mk observations. A behavioral recognition
problem can be defined as the identification of the task performed by the actor
given the LT Ok.

We propose to train a PA Ak = (Σ,Q, φ, ι, γ) for each task Tk. We define Σ
to be the set of all actions Y that the actor performs, and Q the Cartesian prod-
uct X a×Yb, where 0 ≤ b < a ≤ b+2 and M := a+b is a measure of the amount
of memory used by the automaton Ak. In our experiments, M takes values in the
set {1, 2, 3}. The case M = 1 models a purely reactive behavior (or Markovian
behavior): the action depends only on the current state; the case M = 2 corre-
sponds to a behavior in which the action depends on the current and previous
states; finally, in the case M = 3, the action depends on the current state and
the previous action/state pair. In general, for M = 2l or M = 2l + 1, the cur-
rent action depends on the current state and the previous l pairs of actions and
states, and therefore it corresponds to a Markovian behavior of order l. In other
words, it formalizes the dependence Y k

t = Fk(Xk
t , X

k
t−1, Y

k
t−1, . . . , X

k
t−l[, Y

k
t−l])

(notice that the action Y k
t−l does not appear if M is an even number).

Training the automaton Ak from a trace Ok consists in determining the
parameters ι, φ and γ). These parameters determine the probability functions
defined in Equations (1), (2), (3) and (4). If our automaton is memory based on
fully observable states, as described before, we can estimate the parameters by
an easy counting argument. For any state q ∈ Q, let count(q) be the number of
occurrences of symbol q ∈ Q in trace Ok. If a ∈ Σ, count(q, a) has the obvious
meaning, and also count(q, a, q′). We use a model with no final probabilities (we
deal with Equations (2) and (4)). Using Laplace smoothing we can estimate the
parameters as follows:

ι(q) :=
count(q) + 1

mk + |Q|
φ(q, a, q′) :=

count(q, a, q′) + 1

count(q) + |Q| · |Σ|
(5)

Once the parameters ι and φ have been determined, the function PAk
, defined

as in Equation (2), can be used to compute the probability of any trace O
generated according to some unknown behavior B. If we have access only to
traces composed by actions (non observable environment), we can also compute
the probability of a sequence of actions P̂Ak

using Viterbi’s algorithm, where P̂Ak

is defined by Equation (4). In this last situation, the Baum-Welch’s Expectation-
Maximization algorithm could be used to discover the transition probabilities
φ(q, a, q′) (see [18]).

Suppose now that we are given a trace O = [(x1, y1), . . . , (xm, ym)] cor-
responding to some target task T and the objective is to infer the value i

Actas de la XVI Conferencia CAEPIA, Albacete Nov 2015 95

such that T = Ti. To this end, we compute the value PAk
(α, πM) for each

k ∈ {1, . . . , n} and return i := argmaxk{PAk
(α, πM)}, where α = (y1, . . . , ym)

and πM = (qM1 , . . . , qMm). Note that the value of qMi depends on the amount M
of memory used: q1i = xi, q

2
i = (xi, xi−1) and q3i = (xi, xi−1, yi−1).

Moreover, we can measure the distance between an unknown behavior BC

exhibited by actor C and a given behavior BA modeled by automaton Ak by
computing the negative log-probability

RM
Ak

(O) := − 1

m
logPAk

(α, πM), (6)

where O is the trace corresponding to behavior BC and m is the number of
observations in O. This value can be interpreted as a Monte Carlo approximation
of the crossed entropy between behaviors BC and BA, known in the literature
as Vapnik’s risk (see [2]).

3 Experiments

We have run our experiments with a simulator of a simplified version of a
Roomba, which is a series of autonomous vacuum cleaners sold by iRobot3 .
The original Roomba vacuum cleaner uses a set of basic sensors that helps it
perform tasks. For instance, it is able to change direction whenever it encounters
an obstacle. It uses two independently operating wheels that allow 360 turns in
place. Additionally, it can adapt to perform other more creative tasks using an
embedded computer in conjunction with the Roomba Open Interface.

In our implementation, the robot can only move Up, Down, Left and Right

while there is no obstacle in front of it. Although it is possible for the agent to
start anywhere, the traces we generate are always with the agent starting in the
top-left corner of the map.

3.1 Training Maps

The environment in which the agent moves is a 40 x 60 rectangle surrounded by
walls, which may contain all sorts of obstacles. For testing, we have randomly
generated obstacles on an empty map. In the sequel, we briefly explain the six
maps used in the training phase. Each of them is meant to represent a real-life
situation, as indicated by their title (the list is by no means exhaustive).

Empty Map. The empty map consists of a big empty room with no obstacles.

Messy Room. The messy room simulates an untidy teenager bedroom, with
all sorts of obstacles on the floor, and with a narrow entry corridor that makes
the access to the room even more challenging for any “hostile intruder”.

3 According to wikipedia, “iRobot Corporation is an American advanced technology
company founded in 1990 and incorporated in Delaware in 2000. Roomba was intro-
duced in 2002. As of Feb 2014, over 10 million units have been sold worldwide”.

96 José L. Monta et al.

The Office. The office map simulates a space in which several rooms are con-
nected to each other by small passages. In this case, obstacles are representing
big furniture such as office desks or storage cabinets.
The Passage. The highlight of this map is an intricate pathway that leads to
a small room. The main room is huge and does not have any obstacle in it.
The Museum. This map is intended to simulate a room from a museum, with
the main sculpture in the center, and with several other sculptures on the four
sides of the room, separated by small spaces.
The Maze. The most part of this map consists of narrow pathways with the
same width as the agent. There is also a little room which is difficult to find.

(a) Empty Map (b) Messy Room (c) Office

(d) Passage (e) Museum (f) Maze

Fig. 1. Training maps

3.2 Agent Strategies

We have designed a series of strategies with different complexities. When describ-
ing a strategy, we must define the behavior of the agent in a certain situation
(which defines its state Xt) that depends on the configuration of obstacles in its
vicinity (prefix Rnd is used for stochastic strategies).
Walk. The agent always performs the same movement in a given state. As
an example, a possible strategy could be to go Right whenever there are no
obstacles, and Up whenever there is only one obstacle to the right (stationary
deterministic of type 2, it only depends on current state Xt).
Rnd Walk. In this strategy, the next move is picked up randomly from the set
of available moves. For example, an agent that has obstacles to the right and
to the left can only move Up or Down, but there is no predefined choice between
those two (stationary stochastic of type 2, it only depends on current state Xt).
Crash. In this strategy the robot should perform the same action as in the
previous cell while there exists this possibility. Whenever it encounters a new

Actas de la XVI Conferencia CAEPIA, Albacete Nov 2015 97

obstacle in its way, the agent must choose a certain predefined action. Therefore,
it needs to have information about its previous action in order to know where
to move (stationary deterministic of type 3, it depends on current state Xt and
previous action Yt).
Rnd Crash. This strategy is similar to the previous one: the agent maintains
its direction while possible. The main difference is that the action to perform
when the agent encounters an obstacle is chosen randomly (stationary stochastic
of type 3, it depends on current state Xt and previous action Yt−1).
ZigZag. It consists of different vertical movements in two possible directions,
avoiding the obstacles. It has an internal state which tells the robot if it should
advance towards the left or the right side with this vertical movements: it initially
goes towards the right side, and once it reaches one of the right corners, the
internal state changes so that the robot will start moving toward the left side
(stationary deterministic of type 3, it depends on current state Xt, previous
action Yt−1 and internal state Ct).
Rnd ZigZag. This strategy is similar to the previous one, with the only differ-
ence that once it reaches a corner the internal state could either change its value
or not, and this is randomly assigned (stationary stochastic of type 3, it depends
on current state Xt, previous action Yt−1 and internal state Ct).

3.3 Traces and Performance Evaluation

In our evaluation the simulation time is discrete, and at each time step, the
vacuum cleaner can take one of these 5 actions: up, down, left, right and stand
still, with their intuitive effect (if it tries to move into an obstacle, the effect
is equivalent to the stand still action). So the control variable Y can take 5
different values: Up, Down, Left, Right, Stand. The vacuum cleaner perceives
the world through the input variable X having 4 different binary components:
up, down, left, right, each of them identifying whether the vacuum cleaner can
see an obstacle in that direction.

In the training phase, we have generated a trace of 1500 observations for
each pair map/strategy. Then, we used for each strategy a single file obtained
by concatenating the traces from the above mentioned six maps to train its
corresponding probabilistic automaton, resulting in six PAs: A1, . . . ,A6.

In order to evaluate our behavior recognition system, we performed two ex-
periments. We have randomly generated three maps (Testing Group 1) for the
first experiment and 100 maps (Testing Group 2) for the second experiment.
Then, we generated a family of traces (each of them containing 1500 observa-
tions) for each pair strategy/map: (Oi

n)i∈{1,2,3},n∈{1,...,6} for the first experiment
and (Ōi

n)i∈{1,...,100},n∈{1,...,6} for the second one.
For the first experiment, we computed the log-normalized distance RM

Am
(Oi

n)

between the observation trace Oi
n and the automaton Am, as described in Equa-

tion (6). The average value RM
m,n =

∑3
i=1R

M
Am

(Oi
n)/3 of these distances is re-

ported in Figure 2, in the (m,n)-th cell of Table M . Our system classifies the
testing task represented by column n as being generated by the automaton Ak

such that k = argminmRM
m,n (minimizing distance maximizes trace probability).

98 José L. Monta et al.

Table 1: RM
m,n values for M = 1

9000/1500 obs Walk Rnd Walk Crash Rnd Crash ZigZag Rnd ZigZag

Walk 8.8447 9.0881 9.554 7.2567 8.998 7.9354
Rnd Walk 9.6389 3.8179 3.9744 3.661 4.6092 4.5729
Crash 8.8812 6.4605 9.2126 5.1413 4.4686 4.1559
Rnd Crash 8.782 4.186 3.4454 3.454 4.9792 4.4259
ZigZag 10.0427 7.1226 11.6125 4.1299 4.0198 4.0415
Rnd ZigZag 9.4172 6.9799 11.6288 3.7951 3.9144 3.6616

Table 2: RM
m,n values for M = 2

9000/1500 obs Walk Rnd Walk Crash Rnd Crash ZigZag Rnd ZigZag

Walk 10.009 9.8039 9.9791 8.7494 9.8476 8.8655
Rnd Walk 10.0088 4.8185 4.9955 5.6685 6.1171 6.8666
Crash 10.009 8.0111 10.3333 7.0744 6.612 6.303
Rnd Crash 10.0088 5.7422 5.1717 5.2526 6.9289 6.5429
ZigZag 10.0088 8.1036 11.6281 7.9913 5.7136 6.1689
Rnd ZigZag 10.0088 8.0421 11.6978 7.8478 5.7096 5.7097

Table 3: RM
m,n values for M = 3

9000/1500 obs Walk Rnd Walk Crash Rnd Crash ZigZag Rnd ZigZag

Walk 12.0089 11.8429 11.9808 10.6123 12.0257 10.9446
Rnd Walk 12.0089 6.9452 7.2812 8.0741 8.2668 9.1078
Crash 12.0089 11.3821 11.938 8.6991 8.3253 7.8532
Rnd Crash 12.0089 10.7444 6.458 6.5235 8.3757 8.0651
ZigZag 12.0089 11.2901 11.9402 9.3499 6.7775 7.5367
Rnd ZigZag 12.0089 11.2492 11.9295 9.2055 6.7384 6.9907

Fig. 2. Distance Matrix for Testing Group 1

The results of this testing group show that the PA recognition system is able
to correctly recognize the three random strategies (Rnd Walk, Rnd Crash
and Rnd ZigZag). However, the system fails when recognizing the respective
underlying deterministic strategies (Walk, Crash and ZigZag). Also note that
the deterministic versions of the random behaviors (Walk, Crash and ZigZag)
are not confused one each other but each of them is most of the times classified
by the system as its corresponding non deterministic version (Crash is classified
as Rnd Crash, ZigZag as Rnd ZigZag, etc.).

For the second experiment, the numerical value CM
m,n placed in the (m,n)-th

cell of the confusion matrix is the empirical probability of the n-th task to be
classified as the m-th task, that is, the percentage of the learning traces produced
using strategy n that are recognized as being produced by strategy m.

CM
m,n =

|{i ∈ {1, . . . , 100} | m = argmink R
M
Ak

(Ōi
n)}|

100

The diagonal of this matrix reflects the empirical probabilities of right clas-
sification and the sum of the other rows different from the diagonal element is
the probability of error. We observe that this second experiment confirms the
conclusions of the first one.

Actas de la XVI Conferencia CAEPIA, Albacete Nov 2015 99

Table 1: CM
m,n values for M = 1

9000/1500 obs Walk Rnd Walk Crash Rnd Crash ZigZag Rnd ZigZag

Walk 0.13 0 0 0 0 0
Rnd Walk 0.27 1 0.07 0 0 0
Crash 0.2 0 0.2 0 0 0
Rnd Crash 0.4 0 0.53 1 0 0
ZigZag 0 0 0 0 0 0
Rnd ZigZag 0 0 0.2 0 1 1

Table 2: CM
m,n values for M = 2

9000/1500 obs Walk Rnd Walk Crash Rnd Crash ZigZag Rnd ZigZag

Det Walk 0.27 0 0 0 0 0
Rnd Walk 0.27 1 0.27 0 0 0
Crash 0.53 0 0.2 0 0 0
Rnd Crash 0.33 0 0.47 1 0 0
ZigZag 0.13 0 0 0 0.2 0
Rnd ZigZag 0.13 0 0.07 0 0.8 1

Table 3: CM
m,n values for M = 3

9000/1500 obs Walk Rnd Walk Crash Rnd Crash ZigZag Rnd ZigZag

Walk 0.33 0 0 0 0 0
Rnd Walk 0.27 1 0 0 0 0
Crash 0.6 0 0.2 0 0 0
Rnd Crash 0.4 0 0.73 1 0 0
ZigZag 0.13 0 0 0 0.2 0
Rnd ZigZag 0.13 0 0.07 0 0.8 1

Fig. 3. Confusion Matrix for Testing Group 2

4 Conclusions

We have proposed a model for behavioral recognition. Behaviors are identified
with tasks (or strategies for solving a given problem). Our system uses proba-
bilistic automata and correctly identifies tasks performed by the actor whenever
those tasks have a certain random component. A remarkable characteristic of our
model is the difficulty to distinguish between a certain strategy and a similar
strategy perturbed with some degree of randomness. The inference technique is
based on the greatest likelihood probability value generated by the PAs of the
model. The major computational limitation in our fully observable state space is
the amount of memory required by the trained automaton. A possible solution
is to employ only a few amount of non-observable internal states. Future work
also contemplates the usage of probabilistic transducers, to take into account the
input-output (state-action) nature of the observations composing the learning
traces in the observation scenario.

Acknowledgments. The authors acknowledge the financial support of project
BASMATI (TIN2011-27479-C04-04) of Programa Nacional de Investigación and
project PAC::LFO (MTM2014-55262-P) of Programa Estatal de Fomento de la

100 José L. Monta et al.

Investigación Cient́ıfica y Técnica de Excelencia, Ministerio de Ciencia e Inno-
vación (MICINN), Spain.

References

1. Bulling, A., Blanke, U., Schiele, B.: A tutorial on human activity recognition using
body-worn inertial sensors. ACM Comput. Surv. 46(3) (2014) 33:1–33:33

2. Ontañón, S., Montaña, J.L., Gonzalez, A.J.: A dynamic-bayesian network frame-
work for modeling and evaluating learning from observation. Expert Systems with
Applications 41(11) (2014) 5212–5226

3. Bauer, M.A.: Programming by examples. Artificial Intelligence 12(1) (1979) 1–21
4. Lozano-Pérez, T.: Robot programming. In: Proceedings of IEEE. Volume 71.

(1983) 821–841
5. Michalski, R.S., Stepp, R.E.: Learning from observation: Conceptual clustering.

In Michalski, R.S., Carbonell, J.G., Mitchell, T.M., eds.: Machine Learning: An
Artificial Intelligence Approach. Tioga (1983) 331–364

6. Gonzalez, A.J., Georgiopoulos, M., DeMara, R.F., Henninger, A., Gerber, W.:
Automating the cgf model development and refinement process by observing expert
behavior in a simulation. In: Proceedings of The 7th Conference on Computer
Generated Forces and Behavioral Representation. (1998)

7. Sammut, C., Hurst, S., Kedzier, D., Michie, D.: Learning to fly. In: Proceedings of
the Ninth International Workshop on Machine Learning (ML 1992). (1992) 385–393

8. Sidani, T.: Automated Machine Learning from Observation of Simulation. PhD
thesis, University of Central Florida (1994)

9. Fernlund, H.K.G., Gonzalez, A.J., Georgiopoulos, M., DeMara, R.F.: Learning
tactical human behavior through observation of human performance. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part B 36(1) (2006) 128–140

10. Pomerleau, D.: Alvinn: An autonomous land vehicle in a neural network. In
Touretzky, D., ed.: Advances in Neural Information Processing Systems 1, Morgan
Kaufmann (1989)

11. Moriarty, C.L., Gonzalez, A.J.: Learning human behavior from observation for
gaming applications. In: FLAIRS Conference. (2009)

12. Könik, T., Laird, J.E.: Learning goal hierarchies from structured observations and
expert annotations. Mach. Learn. 64(1-3) (2006) 263–287

13. Floyd, M.W., Esfandiari, B., Lam, K.: A case-based reasoning approach to imi-
tating robocup players. In: Proceedings of the Twenty-First International Florida
Artificial Intelligence Research Society (FLAIRS). (2008) 251–256

14. Ontañón, S., Mishra, K., Sugandh, N., Ram, A.: On-line case-based planning.
Computational Intelligence Journal 26(1) (2010) 84–119

15. Ng, A.Y., Russell, S.: Algorithms for Inverse Reinforcement Learning. In: in Proc.
17th International Conf. on Machine Learning. (2000) 663–670

16. Rabin, M.O.: Probabilistic automata. Information and Control 6(3) (1963) 230–
245

17. Dupont, P., Denis, F., Esposito, Y.: Links between probabilistic automata and
hidden markov models: probability distributions, learning models and induction
algorithms. Pattern Recognition 38(9) (2005) 1349–1371

18. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in
speech recognition. In: Proceedings of the IEEE. (1989) 257–286

	A Probabilistic Automata Framework for Behavioral Recognition

