
Using Automated Planning to Obtain Extensions in AFs
and Solve Credulous Acceptance of Arguments under

Admissibility Semantics

Arturo González-Ferrer and Raquel Fuentetaja

Universidad Carlos III de Madrid
Spain

Abstract. This paper presents a novel Automated Planning solution for two ar-
gumentation problems: finding extensions of abstract argumentation frameworks;
and credulous acceptance of arguments under admissibility semantics, providing
a sequence of arguments to be included in the final extension set. In this paper
we propose a PDDL planning model based on conditional effects and numeric
functions. Then, we provide some preliminary results on the performance of this
model on existing benchmark sets. We also discuss on the pros and cons that
planning solvers may provide for argumentation.

1 Introduction and Background

The joint application of Automated Planning and Argumentation is not new. The work
of Ferguson [10] might be the first that had real impact in the community. It raised the
relevance of using arguments when two or more agents (e.g. a computer system and
a human being) need to cooperate in order to decide what to include in a plan and to
execute it. Each agent may have a knowledge base to take decisions. The knowledge
in it can be defeasible, meaning that two arguments may conflict, therefore a preferred
action needs to be selected. The proposed approach is to include defeasible knowledge
about actions, preconditions and effects using rules of the form 〈Φi, pi〉 where each Φi

is a set of premises and each pi is a conclusion in a set∆ of argument steps that an agent
uses for reasoning. So, arguments will support the fact that executing an action aims to
achieve some goals, and they can be in conflict with or defeated by other arguments.
When undefeated, related actions will take part of the solution plan.

Beyond the AI planning field, “Argumentation” has been progressing as an inde-
pendent research area. Solutions based on SAT, CSP, ASP or dynamic programming [3]
have been released recently to find consistent conclusions to so-called “abstract argu-
mentation frameworks” [5] and formally reviewed in the next subsection. Informally, an
abstract argumentation framework is a network of nodes where each node represents a
possible argument, supporting some belief or action, and each edge represents an attack
between two arguments, meaning that the arguments are confronted somehow. While
this may seem as a simplistic representation of how agents would use such a network to
argument among them, it is a challenging problem [7] to find subsets of nodes that can
survive together to the attacks in the network, following some determined semantics
[1]. These subsets are usually known as extensions.



82 Arturo González-Ferrer et al.

Thus, the goal of our work is to present a model suitable for domain-independent au-
tomated planning solvers that aims to find extensions of abstract argumentation frame-
works under admissible semantics, where the specification of some constraints can be
asserted in the goal (e.g. number of arguments included or which arguments do we want
to be included). Results will be shown about performance of our solution in different
situations using existing benchmarks [4]. We will also discuss the knowledge represen-
tation challenges for Automated Planning found during our experiments and the pros
and cons of our solution. The rest of the paper is organized as follows. Next we intro-
duce a formal definition of AFs and admissibility semantics and the field of Automated
Planning. Section 2 describes our planning model. Then, we present some preliminary
results. Section 4 revises the related work; and finally we include some conclusions.

1.1 Abstract Argumentation Frameworks

Definition 1. An abstract argumentation framework (AF) is a tuple 〈S,R〉 where S
is a non-empty set of arguments and R is a binary relation on S representing attacks
between the arguments.

The objective of an AF may be understood as identifying sets of justified argu-
ments in S, based on the interactions represented by R and appropriate semantics that
determine which subsets of S can be accepted as coherent. Such subsets are called
extensions.

Definition 2. Given an argumentation framework 〈S,R〉, an argument x ∈ S is ac-
ceptable wrt. E ⊆ A iff E defends x, i.e. ∀y ∈ S such that (y, x) ∈ R,∃z ∈ E such
that (z, y) ∈ R.

Definition 3. Given an argumentation framework 〈S,R〉, an extension E ⊆ S is ad-
missible iff (1)E is conflict-free, i.e. there is no attack between its components: ∀x, y ∈
E, (x, y) /∈ R; and (2) all its arguments are acceptable arguments wrt. E.

An argumentation semantics is the formal definition of a method (either declara-
tive or procedural) ruling the argument evaluation process. An excellent introduction
to well-known semantics existing in the literature is presented by Baroni et al. [1].
These semantics influence how the justification of an argument in the network takes
place, meaning that it survives the attacks, either by self-defense or because any other
argument in the solution defends it. We cope with admissibility (and so with conflict-
freeness), which is a common base requirement for the rest of existing semantics.

Usual research problems addressed for AFs are to enumerate one or all the possible
extensions of an AF under some determined semantics and to find out the credulous
or skeptical acceptance of a concrete argument in a network under some determined
semantics (i.e. an argument belongs to at least one or to all the extensions of a network,
respectively). The aim of this paper is to explore how to use Automated Planning to
enumerate one non-empty extension and to check credulous acceptance under admis-
sible semantics, which has been shown to be a NP-complete problem [7], by finding a
credulous-accepted solution.



Actas de la XVI Conferencia CAEPIA, Albacete Nov 2015 83

1.2 Automated Planning

Automated Planning is an Artificial Intelligence area that develops mechanisms and
techniques to choose and organize actions in order to achieve a set of goals from a
given initial state [12]. Formally, a classical planning problem may be defined as a
state transition system specified by the 3-tuple Σ = (I,A,G), where I is the initial
state of the world, represented explicitly by a set of instantiated predicates; A is a set
of possibly applicable actions in a state, always that corresponding preconditions are
fulfilled, producing some concrete effects; and G is the specification of a set of goals
that the planner will try to reach through a deliberative search process. The output of
this process is a plan, or sequence of actions, such that its consecutive application leads
the system from the initial state to a state containing all goals.

The de facto standard for the representation of planning domains is the Planning
Domain Definition Language (PDDL) [11]. Automated planners accepting PDDL have
two inputs: the planning domain and the planning problem. The planning domain de-
fines the domain actions. These actions are usually expressed in a general way by using
variables and lifted predicates. The planning problem defines the specific facts of the
initial state and the goals. The specification of a planning domain in PDDL implies
the definition of a set of predicates and a set of domain actions, defined by their pre-
conditions and effects. The great advantage of a representation language like PDDL is
that the definition of the problem is separated from its resolution. In this way, with one
encoding we can test different search algorithms and heuristics without any change to
the implementation, just requiring the support of some features of the language by the
planner. Additionally, PDDL separates the definition of the domain dynamics, i.e. the
actions, from the specific problem to be solved, defined by the initial state and the set of
goals. Domain actions are defined in a generic way by means of lifted predicates. Thus,
the same domain definition can be used to solve any problem in this domain.

2 Proposed Model

We consider the problem of finding extensions as a search process modeled as a plan-
ning problem. The idea is to generate a plan that builds a set of arguments which is an
admissible extension. That is: a) there are no conflicts and b) there are no unacceptable
arguments. We also impose the requirement that c) the extension contains more than
one element. This last requirement can be changed to any number, or could even be
established as criteria to be minimized or maximized. Checking the credulous accep-
tance of an argument x, i.e. if x belongs to at least an extension, requires an additional
constraint: d) the argument x belongs to the extension. These requirements are encoded
as goals of the planning problem.

There are different possible PDDL encodings to model this problem. Some useful
PDDL features [11,19,9] could be:

– Numerical functions: functions which value is a number instead of a truth value.
– Derived predicates: higher-level concepts derived from other predicates.
– Conditional effects: action effects that only occur under additional constraints.



84 Arturo González-Ferrer et al.

– Quantification in formulas and over effects: existential/ universal quantified pre-
conditions/effects.

Our first implementation considered using PDDL axioms through derived predi-
cates. Derived predicates allow to define conditions on subsets and looking for goals
that reach a certain type of subset. We only used derived predicates to specify in the
problem goals the properties to be met by the extensions. For instance, to force admis-
sibility we imposed reaching a state with (admissible e) in the goal. The domain
contains two actions IN and OUT, to include and remove an argument from a set. The
preconditions of these actions only check if the argument is/is not in the set.

While having a very intuitive specification1 expressed as a nested hierarchy of defi-
nitions (i.e. the admissible axiom is defined in terms of the acceptable axiom,
which is further defined in terms of the conflict-free axiom), the use of nested
universal quantifiers for some definitions made the preprocessing time of the derived
predicates to increase exponentially with the number of arguments in the network. We
tested this domain using the FF-X planner [21] and a short number of arguments (up to
15). We observed that the preprocessing was unmanageable after this limit.2

Our final representation uses a different encoding based on numeric functions and
conditional effects. Table 1 includes a description of the predicates and numeric func-
tions used to model our domain, shown in Listing 1.1. The action in(?x - arg ?s

- set ) includes the argument ?x in the set ?s, having a precondition to avoid con-
sidering the arguments ?x that do not affect the rest of the network (i.e. we can ignore
arguments that do not attack or are attacked to/by some other in the network). This first
precondition is similarly applied in other solvers. Then, including argument ?x produces
five different blocks of effects, depending on several conditions (see Listing 1.1):

– Independently of any condition, the element ?x will become member of the exten-
sion and the number of elements will be increased by one (lines 6-8).

– For all argument ?y outside the extension, if ?x attacks ?y and the extension has
not been marked as defending from ?y, then it is marked as defending from ?y:
(set-already-defends ?s ?y) (lines 11-14).

– If the extension has already some members ?y and some attack exists between ?x
and ?y, then ?x and ?y are in conflict and number of conflicts should be increased
(lines 16-20).

– Check all the nodes ?y outside the set that attack the incoming member ?x and
this attack is not defended either by itself or any other node in the set, so that
we anticipate the situation of unacceptability for ?x. In that case, we increase the
counter of unacceptable situations and mark ?x as unacceptable because of ?y (lines
22-27).

– If the node ?x that we are inserting attacks a node ?z that was causing another node
?y in the set to be unacceptable, we delete the predicate (unacceptable ?y ?s

?z) and decrease the counter of unacceptable situations. Note that we need to check
this for any pair ?y, ?z using the universal quantifier (forall) over the conditional
effect, otherwise we cannot guarantee the soundness of the solution (lines 29-33).

1 See the specification through axioms at http://www.ugr.es/ arturogf/aetap/dom-axioms.pddl
2 FF-X is one of the few planners planner supporting derived predicates.



Actas de la XVI Conferencia CAEPIA, Albacete Nov 2015 85

Table 1. Description of the PDDL predicates and numeric functions.

PDDL predicates/numeric functions Description
(attacks ?x - arg ?y - arg) Argument ?x attacks argument ?y
(belongs-to-set ?x - arg ?s - set) Argument ?x belongs to the extension set ?s
(set-already-defends ?s - set ?x - arg) This predicate is activated when some argument(s) in set ?s

already defends it from argument ?x, meaning that there is
some argument in ?s that defends it from any attack of ?x

(unacceptable ?x - arg ?s - set ?y - arg) The argument ?x is unacceptable in set ?s because argument
?y is attacking it and there is no defender in ?s, i.e. any argu-
ment in ?s attacks ?y

(num-conflicts ?s - set) Numeric fluent expressing the number of conflicts in the set,
i.e. the times that some arg1 attacks some arg2, both being
in the set. It is increased when an IN action anticipates this
happening.

(num-unacceptable ?s - set) Numeric fluent expressing the number of attacks that make a
situation for an argument unacceptable when included in the
set. For example, if we include an argument with 3 attack-
ing arguments without any defense from the set, this will
be increased three times. Need to be decreased when the set
self-defends from each attack.

(num-elements ?s - set) Numeric fluent controlling the number of elements already
in the set. It can be used to establish a minimum/maximum
number of arguments in the extension.

Listing 1.1. PDDL encoding of the action IN.
1 (:action in
2 :parameters (?x - arg ?s - set)
3 :precondition (and
4 (not (belongs-to-set ?x ?s))
5 (exists (?j - arg) (or (attacks ?x ?j)(attacks ?j ?x))))
6 :effect (and
7 (belongs-to-set ?x ?s)
8 (increase (num-elements ?s) 1.0)
9

10 ; mark defenses of ?x to ?y arguments
11 (forall (?y - arg)
12 (when (and (attacks ?x ?y) (not (belongs-to-set ?y ?s))
13 (not (set-already-defends ?s ?y)))
14 (set-already-defends ?s ?y)))
15
16 ; detect the breakage of conflict-freeness
17 (when (and (>= (num-elements ?s) 1)
18 (exists (?y - arg) (and (belongs-to-set ?y ?s)
19 (or (attacks ?x ?y) (attacks ?y ?x)))))
20 (increase (num-conflicts ?s) 1.0))
21
22 ; detect the incoming unacceptable situations
23 (forall (?y - arg)
24 (when (and (attacks ?y ?x) (not (belongs-to-set ?y ?s))
25 (not (attacks ?x ?y)) (not (set-already-defends ?s ?y)))
26 (and (increase (num-unacceptable ?s) 1.0)
27 (unacceptable ?x ?s ?y))))
28
29 ; solved unacceptance situations
30 (forall (?y - arg ?z - arg)
31 (when (and (unacceptable ?y ?s ?z)(attacks ?x ?z))
32 (and (decrease (num-unacceptable ?s) 1.0)
33 (not (unacceptable ?y ?s ?z)))))))



86 Arturo González-Ferrer et al.

Listing 1.2. PDDL encoding of the problem, including the goal.
(define (problem BSname)
(:domain ARGUMENT-TEST)
(:objects

e - set
arg0 arg1 arg2 arg3 ... arg149 - arg)

(:init
(= (num-elements e) 0)
(= (num-conflicts e) 0)
(= (num-unacceptable e) 0)
(argument arg0)
(attacks arg0 arg5)
(attacks arg0 arg4)
(argument arg1)
(attacks arg1 arg4)
...
(:goal (and (= (num-conflicts e) 0)

(= (num-unacceptable e) 0)
(>= (num-elements e) 1))))

Listing 1.2 shows the encoding of a planning problem generated from a problem
in the benchmark set. The predicates are also those introduced in Table 1. The initial
state contains all counters initialized to zero. It also contains the existing arguments
as objects, and the instances of the attack relationship as binary predicates. The exten-
sion e is initially empty, since there are not arguments belonging to it. We specify a
goal where there are neither conflicts3 nor unacceptable arguments, and the extension
contains more than one element. Thus, this encoding represents the problem of finding
an admissible extension (e) with more than one element. For the problem of credu-
lous acceptance of one or several arguments x1, . . . xn we include in the goals addi-
tional facts to force the membership of these arguments to the set: (belongs-to-set
x1, e), . . . , (belongs-to-set xn, e).

3 Experimental Results

We present some preliminary experiments to evaluate the performance of our model for
the two presented challenges. A deeper evaluation would include to compare with exist-
ing argumentation solvers, considering the results of the first International Competition
on Computational Models of Argumentation (ICCMA)4.

We selected the benchmark set ’benchmarks 1-2011’ available in the DBAI website
[4]. We transform problems automatically into the corresponding PDDL problem, that
together with the domain, are used as inputs to the state-of-art Metric-FF planner[13].

All experiments were carried out on a PC with “Intel(R) Xeon(R) X3470 @ 2.93GHz”
CPU with 8GB RAM, but limited to 600secs and 7GB of virtual memory.

3 Note that the zero-conflicts is set as goal and not as precondition of the IN action because there
are transition situations where conflicts must exist in order to generate a final solution later on
that has no conflict.

4 http://argumentationcompetition.org/2015/



Actas de la XVI Conferencia CAEPIA, Albacete Nov 2015 87

Metric-FF
N. FINISHED 567 times
N. TIMEOUT 6 times
N. MEMOUT 427 times

FIN. AVGTIME 8.84 secs
TIME < 10 secs 352 times
Q1 2.26 secs
Q2 5.59 secs
Q3 14.865 secs

(a) (b)

Fig. 1. (a) Average times for finding an extension (tw5-p0.65 and tw10-p0.65) and finding out
credulous acceptance (tw5-p0.65); (b) Performance of Metric-FF planner for finding out the cred-
ulous acceptance of 1000 random arguments.

3.1 Finding Extensions

Benchmark sets were created with probabilities 0.4, 0.65 and 0.9, so we decided that
0.65 would be an intermediate value good enough to check our proof of concept. Re-
garding tree-width, it is a parameter of the graph that is relevant for the performance
of some argumentation algorithms that work on tree decompositions of the graph. The
benchmark set was generated for tree widths 3, 5, 7 and 10, so we selected 5 and 10 to
see if it affects performance of our solver too. Results are shown in Fig. 1 (a). This fig-
ure shows the average time according to number of arguments for finding an extension
with at least 2 elements for tw5-p0.65 and tw10-p0.65, using Metric-FF. Number n in
the legend refers to the number of finished runs over the total problem instances of the
benchmark set. We can see that performance keeps within reasonable times (less than
30 secs), all within the low memory limit of 7GB we imposed. The soundness of the
solution is guaranteed by the planning domain and problem specifications themselves.
During development of the model we developed a Bash script to check that the solutions
provided are admissible, checking the solution against the input AF. The output of this
script helped us to identify mistakes easily than using VAL plan validation tool [14]
by analysing defend and attack situations of the arguments involved in the planning
problem.

3.2 Finding Out Credulous Acceptance

For checking the credulous acceptance we randomly selected 1000 arguments of a ran-
dom subset of 400 instances of tw3_p0.4, and checked the credulous acceptance of
those arguments on those instances. Results in Fig. 1 (b) show the performance of
Metric-FF planner in terms of the number of finished runs with a solution, the number
of unfinished runs for time or memory reasons, the average time to those who finished,



88 Arturo González-Ferrer et al.

the number of times that ended in less than 10 seconds, and the quartiles (Q1, Q2, Q3)
of times for those who finished.

Metric-FF is able to return an admissible extension containing the random credulous-
accepted argument 567 times. The efficient dynPARTIX solver [8] was further used to
double-check the correctness (i.e. admissibility) of the solutions and to have a feeling
of performance compare to a state of the art solver not based on planning. It returns a
“YES” to credulous acceptance checking under admissible semantics 572 times. The 6
problems not solved by Metric-FF (TIMEOUT) are probably cases where we are trying
to check an argument that is isolated in the network (does not attack or is attacked by
anyone). As described in our model, we included the precondition to not consider these
arguments for the IN action, so it is a problem derived from this situation, that could
be easily fixed. We can also see how the performance evolves with the number of ar-
guments of the network for the random subset of instances of tw5_p0.65 in Fig. 1 (a),
where dynPARTIX solved 787 as credulous acceptance, while Metric-FF solved 773.

While the time to check credulous acceptance in dynPARTIX is almost zero, it did
not return a solution, while our solver does. In conversation with dynPARTIX authors,
checking credulous acceptance requires a bottom-up traversal of the AF’s decomposi-
tion tree while returning a solution would require a second up-bottom traversal enu-
merating the solutions, requiring more time and memory. Nonetheless, the scope of this
paper does not cover a full comparison with dynPARTIX or any other solver, and it is
left for future work. It seems possible to combine both solutions, checking acceptance
with traditional solvers and looking for solutions with a PDDL-based solver if the an-
swer is YES. In such a case, as shown in Fig. 1 (b), the average time to find a solution is
8.84s, the 25% are found in less than 2.26s, 50% are found in less than 5.59s and 75%
are found in less than 14.8s.

4 Related Work

Scant work has been directed to address the resolution of argumentation networks by
means of Automated Planning. The work by E. Black et al. [2] presents a conformant
as classical planning solution to find strategies that a persuader can use to convince an-
other agent (non-adversarial persuasion dialogues). Authors look for a strategy where
the set and the order of beliefs asserted by the persuader affects the success of this
strategy, which is influenced by a probabilistic model that the persuader has about the
responder’s set of beliefs. The persuader asserts subsets of beliefs avoiding those that
are part of a common knowledge base between both, avoiding the repetition of be-
liefs already asserted; the responder just answer yes (it finds acceptable the union of
the asserted beliefs of the persuader with his own real subset) or no. In their example,
authors consider grounded semantics.5 Considering the possible strategies, authors cal-
culate a probability of success for that strategy (i.e. what happens depending on which
is the common KB), and use planning to look for an optimal strategy that maximizes
such probability. A. Monteserin et al. [16,17] present a framework for negotiation-based
planning, introducing the use of PDDL as possibility for reaching defined agreements.

5 The smallest extension, with regard to set inclusion, of the complete extensions, i.e. those
extensions E that are admissible and all acceptable arguments respect to E are included.



Actas de la XVI Conferencia CAEPIA, Albacete Nov 2015 89

Authors propose to define several create-argument and accept-argument actions, where
the initial state is a conflict situation while the goal is an expected agreement. I. A. Letia
et al. [15] describe how to use a concept map for representing argument networks, and
to interleave planning with arguing, replanning and using a preference relation or per-
suasion strategy to find solutions to the network. Informal and incomplete modeling of
argument networks through PDDL is explored. The work of A. R. Panisson et al. [18]
describes an HTN planning approach to multi-agent negotiation. Our work is directed
to find extensions in AFs but could also be adapted to a multi-agent persuasion or agree-
ment setting.

5 Discussion and Conclusions

We have presented a solution based on Automated Planning to find extensions and
check credulous acceptance of arguments under admissibility semantics. Our model
can be seen as a kind of magnet to not deviate from our goal, keeping the number of
conflicts and unacceptability situations in zero. Our initial domain representation can be
very easily extended to cope with ordering preferences or minimization of the number
of steps. Also our model can be augmented to a a multi-agent planning approach where
some agents try to reach a common goal or participate in a negotiation-based approach.

In contrast to usual argumentation solvers, our approach considers the logical struc-
ture of the argumentation process. This is interesing for analysing the way we reach the
final extension set, i.e. the proof derivation [6]. Also, the order of arguments is impor-
tant for finding strategies associated to dynamic disputes and negotiation in multi-agent
settings, where a dialectical proof is needed [20]. In this sense, establishing a policy
that, for example gives a better heuristic value to an argument defending more attacks,
could reach a coherent ordered solution, reducing the number of steps. Another strat-
egy could be to include arguments that try to defend firstly from the last attacks or
from those having more strength. This can be interesting from a narrative or dialogue
perspective. We plan to adapt our model to this type of problem in future work.

The limitations of planning for extension-related problems arise from its inner char-
acteristics. Mainly the fact that it is aimed to provide one solution and stop. Therefore,
it does not show like a very appropriate technique for extension enumeration. However,
it could definitely help in argument networks where heuristic functions could help find-
ing a goal faster and with a less memory footprint. Another problem where our model
would work to verify that a concrete subset is an extension (extension verification), with
just a simple modification of the planning problem goal. The exploration of heuristic
search techniques for argumentation can benefit from using domain-independent auto-
mated planners.

6 Acknowledgements

This work has been partially supported by the Spanish project TIN2014-55637-C2-1-R.



90 Arturo González-Ferrer et al.

References

1. Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation semantics.
Knowledge Engineering Review 36(4), 365–410 (2011)

2. Black, E., Coles, A., Bernardini, S.: Automated planning of simple persuasion dialogues. In:
Computational Logic in Multi-Agent Systems, pp. 87–104. Springer (2014)

3. Charwat, G., Dvořák, W., Gaggl, S.A., Wallner, J.P., Woltran, S.: Methods for solving reason-
ing problems in abstract argumentation–a survey. Artificial Intelligence 220, 28–63 (2015)

4. DBAI: benchmark set. http://www.dbai.tuwien.ac.at/research/project/
argumentation/dynpartix/examples/benchmarks_1-2011.zip (2015)

5. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence 77(2), 321–357
(1995)

6. Dung, P.M., Thang, P.M.: A sound and complete dialectical proof procedure for sceptical
preferred argumentation. In: LPNMR-Workshop on Argumentation and Nonmonotonic Rea-
soning. pp. 49–63 (2007)

7. Dunne, P.E., Wooldridge, M.: Complexity of abstract argumentation. In: Argumentation in
Artificial Intelligence, pp. 85–104. Springer (2009)

8. Dvořák, W., Morak, M., Nopp, C., Woltran, S.: dynPARTIX-a dynamic programming rea-
soner for abstract argumentation. In: Applications of Declarative Programming and Knowl-
edge Management, pp. 259–268. Springer (2013)

9. Edelkamp, S., Hoffmann, J.: PDDL2.2: The language for the classical part of the 4th inter-
national planning competition. 4th International Planning Competition, at ICAPS’04 (2004)

10. Ferguson, G., Allen, J.: Arguing about Plans: Plan Representation and Reasoning for Mixed-
initiative Planning. In: AIPS. vol. 2010, pp. 43–48 (1994)

11. Fox, M., Long, D.: PDDL2.1: An extension to PDDL for expressing temporal planning do-
mains. Journal of Artificial Intelligence Research 20, 61–124 (2003)

12. Ghallab, M., Nau, D., Traverso, P.: Automated planning: theory & practice. Elsevier (2004)
13. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through heuristic

search. Journal of Artificial Intelligence Research 14, 253–302 (2001)
14. Howey, R., Long, D., Fox, M.: Val: Automatic plan validation, continuous effects and mixed

initiative planning using PDDL. In: Tools with Artificial Intelligence, ICTAI. pp. 294–301
(2004)

15. Letia, I.A., Groza, A.: A Planning-Based Approach for Enacting World Wide Argument
Web. In: Intelligent Distributed Computer Systems & Applications. pp. 137–146 (2008)

16. Monteserin, A., Amandi, A.: Argumentation-based negotiation planning for autonomous
agents. Decision Support Systems 51(3), 532–548 (Jun 2011)

17. Monteserin, A., Berdún, L., Amandi, A.: Analysing the PDDL language for argumentation-
based negotiation planning. In: Computational Science and Its Applications (ICCSA). pp.
698–713 (2012)

18. Panisson, A.R., Farias, G., Freitas, A., Meneguzzi, F., Vieira, R., Bordini, R.H.: Planning
interactions for agents in argumentation-based negotiation. In: 11th Int. Workshop on Argu-
mentation in Multi-Agent Systems (2014)

19. Pednault, E.P.: ADL: Exploring the middle ground between STRIPS and the situation calcu-
lus. In: Principles of Knowledge Representation and Reasoning. pp. 324–332 (1989)

20. Prakken, H.: Relating protocols for dynamic dispute with logics for defeasible argumenta-
tion. Synthese 127(1-2), 187–219 (2001)

21. Thiébaux, S., Hoffmann, J., Nebel, B.: In defense of PDDL axioms. Artificial Intelligence
168(1), 38–69 (2005)


