An Integrative Framework for the Model-Driven
Development of Traffic Simulations

Alberto Fernandez-Isabel and Rubén Fuentes-Ferndndez

GRASIA™, Facultad de Informética, Universidad Complutense de Madrid
¢/ Profesor José Garcia Santesmases 9. 28040 Madrid, Spain
afernandezisabel@estumail.ucm.es, ruben@fdi.ucm.es

Abstract. Road traffic is a daily component of life in our societies.
Researchers have made of simulations a key tool to study it. Their de-
velopment still has to deal with the difficulties arising from the hetero-
geneity of the underlying theories, contexts, and goals. This frequently
demands multiple profiles in development teams, which causes communi-
cation problems. This work proposes a model-driven development frame-
work to address these issues. It organises tasks and roles around the
work on models and transformations, making explicit all the informa-
tion used in the development. The core modelling language is focused on
the behaviour of participants in road traffic and their means of trans-
port. Researchers use tailored tools to specify models compliant with
that language and produce source code from them. A development pro-
cess gathers the experience in these tasks to guide researchers. A case
study on a simulation that incorporates a model of factors that produce
driving mistakes illustrates the approach.

Keywords: Traffic modelling, road behaviour, development process, model-
driven engineering, agent-based modelling

1 Introduction

Road traffic plays an important role in modern societies. People have to address
different situations related to it as soon as they leave their homes: driving a
vehicle, being a passenger, or walking down the street. These situations involve
multiple interactions, depending on people features, knowledge, and means of
transport. Their study has become an important research field related to goals
such as improving vehicle and people flows, reducing dangerous situations, or
pollution control. Real experiments regarding traffic are strongly limited given
the involvement of living beings, and the complexity of its settings (i.e. number
of elements, variables, and operations to consider). For this reason, the use of
simulations has become common in these studies [9].

The development of a traffic simulation is a complex project. It needs to
consider multiple theories about road traffic to explain the phenomenon from

** Group of Agent-based, Social, and Interdisciplinary Applications

62 Alberto Fernidndez-Isabel et al.

different perspectives. Moreover, there are different levels of abstraction to con-
sider, e.g. those of requirements, design, and code. These theories and levels
frequently correspond to experts with different backgrounds. Integrating these
aspects requires a precise understanding of all the information involved in the
development of the simulation. Model-Driven Engineering (MDE) has been pro-
posed to deal with these issues [3].

MDE [1] organises development around models. These models are compliant
with Modelling Languages (MLs). Transformations automate some modifica-
tions of models (e.g. adding design or platform dependent information) and part
of the generation of artefacts (e.g. code generation and reverse engineering). Pro-
cesses provide guidelines for these tasks. MDE has the advantages of the high
reusability of models and transformations, and the explicit specification of all
the information involved in development. The main obstacle to adopt it in a
given context is the high initial effort to set it up, e.g. to define MLs and usual
transformations, or develop tailored tools.

This work proposes a MDE process to develop traffic simulations. It is based
on a domain-specific Traffic ML (TML) and support tools. The design of the ML
pursues facilitating the integration of different theories and the modelling of the
multiple roles involved in traffic (e.g. drivers, passengers, and pedestrians). It is
based on the Agent-Based Modelling (ABM) [5] and Driver-Vehicle-Environment
(DVE) [13] approaches. ABM makes of agents its core modelling primitive. These
are intentional and social entities. DVE organises traffic concepts in three cate-
gories corresponding to its acronym. It highlights the mutual influences of these
elements in their behaviours. The framework uses Eclipse projects [6] to define
the TML and two tools based on it, a model editor and a code generator.

The development process presented here describes the use of that infrastruc-
ture. It is specified with the Software Process Engineering Metamodel (SPEM)
[7]. There are five phases: Preliminary model evaluation, Model design, Source
code generation, Simulation setup, and Simulation. They cover the full develop-
ment lifecycle, including the choice of theoretical models, their specification with
the TML, the design of transformations, and the generation of code.

A case study models risks factors in traffic and develops code to use them
in a simulation, illustrating the application of the process. It shows the involved
tasks and tools, and the potential benefits of MDE for this kind of project.

The rest of the paper is organised as follows. Section 2 introduces the TML
and development tools. Section 3 presents the process and Section 4 applies it to
specify and simulate the case study. Section 5 compares the presented approach
with related work. Finally, Section 6 discusses some conclusions and future work.

2 Traffic Modelling and Simulation Framework

The framework includes three main resources: the TML, a model editor, and a
code generator. They are the basis of the proposed process.

The specification of the TML is made with a metamodel. It establishes its
primitives and constraints. Metamodels are described using meta-modelling lan-

Actas de la XVI Conferencia CAEPIA, Albacete Nov 2015 63

E GeneralRelationship RInherite
T RName : EString 0.r

0. Presents

0. Enherits | |0 BRelated

B Generalelement
K
F
H vehide
H person Uses 0.5 =
H knowledge g Profile % 4 Esting T VName : EString
Egt 041 Displays i = Visiblelnfo : EJavaCbject
T KName ; EString 7 PName : EString P | o Visblelo : ElavaObject S EJavaCJ)bject
= KsGeneral | E3oolean = PValues : Elnt = Resources : ElavaObject| | = Walues : tl
= KValues | Elnt # calalatePValue] : Ent & observeEnvironment) Drives 0.1 alues : Eln
= Route : ElavaObject ——— ¥ irtart & exacutelnstruction()
= RoutePlace | Elnt 0l igtec) @ obtainVisiblelnfof) : ElavaObject
i Foyitadts 0.1 Percieves J, @ calculateVValue) : Ent
@ calculatekvalue) : Elnt - -
0.* PFDecomposes] Enwrgnment 0.1 Interacts ‘ 0.* VDecomposes
0."KDecomposes T EName : EString
E PComponent S EValues : Ent H VComponent
H kcomponent o PEbme. Erig © AvallzbleArea : ElavaObject T VCName : EString
T KCName : EString : PClales :Et @ calaulateEValue) Elnt = VCValues | Elnt
= KCValues ! Elnt caleultePCValue() Elt 0.x EDECUHWUSES‘I’ @ executelnstruction))
@ calculateKCValue(: Elnt L 1 E Ecomponent @ calculateVCValue() : Elnt
PFCDecomposes 0. T ECName : EString
KCDecomposes 0. = ECValues : Eint VCDecomposes 0.
@ calculateECValue() Ent ||

0. ECDecomposes

Fig. 1. Main elements of the TML metamodel.

guages [1]. In the case of Eclipse projects, this language is Ecore [6]. Figure 1
shows the core elements of the metamodel of the TML. They are organised using
hierarchical structures based on inheritance and composition.

The inheritance hierarchies have two root meta-classes, the abstract Gen-
eralElement for concepts and GeneralRelationship for relationships. The Eln-
herits and RlInherits references in these meta-classes allow introducing new in-
heritance relationships at the model level.

Those meta-classes which name includes Component (e.g. KComponent and
VComponent) can be decomposed into others of their same type. For example,
a KComponent into other instances of KComponent. This mechanism allows
arbitrary composition hierarchies at the model level.

The metamodel introduces several constraints using the Object Constraint
Language (OCL) [8]. For instance, these prevent inheritance in models among
entities of different types using Elnherits. In this way, in a model specification,
a Knowledge class can only inherit from other Knowledge classes.

From the conceptual perspective, the TML is based on ABM [5] and DVE [13]
approaches as said before. The Person meta-class is the core one. It represents
people participating in traffic, regardless their means of transport (i.e. drivers,
passengers, or pedestrians). This meta-class is related to the Environment meta-

64 Alberto Fernidndez-Isabel et al.

class, which represents the information about the place where the action occurs.
A Person can interact directly with it (i.e. pedestrians) or using an instance
of the Vehicle meta-class (i.e. drivers or passengers). Knowledge and Profile
meta-classes model characteristics of people, respectively their mental state (e.g.
information on facts or how to maneuver a vehicle) and features (e.g. driving
experience or emotional upsets). The Knowledge meta-class can represent global
or individual information. The attribute KIsGeneral differentiates these uses.

Some information represented with the TML does not change in simulation
time (e.g. age or vehicle type), but other does it (e.g. impatience or fuel consump-
tion). The attributes which Values in their name (e.g. PValues or VCValues)
and their related calculate methods are used to model these changes in terms of
mutual influences among attributes from multiple entities. The details of these
effects can be specified introducing code snippets.

Work with the previous metamodel is supported by two main tools. A graph-
ical editor allows specifying models compliant with the TML, validating them,
and applying OCL constraints. It is an Eclipse plug-in developed with the Graph-
ical Editing Framework (GEF) [6]. The code generator supports the specification
and execution of transformations to generate source code from models. It takes
as basis the code templates generated for the metamodel elements by the Eclipse
Modelling Framework (EMF) [6]. The tool provides graphical wizards to support
the integration of platform-dependent libraries, the development of code snippets
to attach to the model elements, and the final generation of transformations.

3 The Development Process

The development process for simulations starts when traffic experts study the
problem and choose theories to model it, and finishes when the actual simulation
is used in the platform. It considers the five phases that can be seen in Fig. 2.
Though the diagram shows a linear workflow for the sake of clarity, the process
is incremental and iterative, with feedback loops among the different phases
and tasks. Regarding roles, traffic experts carry out most of the tasks, while
programmers only collaborate in the Source code generation phase.

The process begins with the Preliminary model evaluation phase. Traffic
experts select a theory suitable for the problem to study. This must be compatible
with the TML (see Section 2), which implies that the theory must identify a set
of characteristics of individuals or relationships among the elements considered
that can be classified within the categories (i.e. concepts) in the TML. At this
stage, experts must define a modelling planning with the main correspondences
between the theory and TML concepts.

The Model design phase comprehends two internal phases. In Build model,
traffic experts use the modelling planning to create a TML model with the types
that represent the concepts from the chosen traffic theory. OCL [8] constraints
can be used to set limitations beyond the TML in the use of the model types,
e.g. limiting allowed inheritance and composition relationships. The result is a
theory model with the base types and relationships for the simulation. In the

Actas de la XVI Conferencia CAEPIA, Albacete Nov 2015 65

Successful
platfarm
. sdaptation
|
i
modelling
beginning I
sucocess
T
plm:luoe usa :
mndlflcah:}ns
____________ fn\sned
P{Ehmlnary | Made! 2 E‘mume Simulati
model | design : pﬂ}dune garaton | i “Simulation |
evaluation | EE"HE“D" 1 ~. setup use "
~ \ - |
unfeaslble 20 (;’ |
‘adaptation Sucosss
| e — |
| |
é —. |
|
Platform tadom 1y — !
No model i
d e t.e edaptation sdaptation | (gg
adaptation adaptation Transformation
beginning ceds Sucoessful

| simulaticn

[

Fig. 2. Overview of the development process.

Validate model internal phase, traffic experts check the resulting theory model
for assessing its semantic compliance with the TML and theory. Some semantic
aspects are not represented at the syntactic level (i.e. with the metamodel and
constraints), so experts manually check and document them. If problems are
detected, the process must return to a previous phase to introduce modifications.

Next, the Source code generation phase produces from the theory model the
basic source result code for the simulation. This code implements the concepts
in the theory model. This phase is decomposed into three internal phases (see
Fig. 3): Get initial assets, Redefine source code, and Test result code. All of them
are supported by the code generator tool. In this phase, traffic experts can need
in some tasks the help of programmers.

The Get initial assets internal phase prepares the code generator to start
working. Experts load the theory model from the previous phase and external
libraries, mainly describing the target simulation platform. They can also reuse
a previous state of the workspace in order to bring code fragments from other
projects.

The Redefine source code and Test result code internal phases are tightly
linked in an explicit cycle of generate & review. The first one links model entities
to code snippets, either reused or developed from scratch. The second one tests
those fragments according to the simulation goals. Traffic experts and program-
mers work together here, respectively establishing the expected functionalities
of the resulting code in the target platform, and developing that code when
reusing is not possible or complex modifications are required. The code gener-
ator supports here exploring models, extending the classes defined in external
libraries, code edition, and packaging and deployment. For instance, extending

66 Alberto Fernidndez-Isabel et al.

Source Code Generation Disgram Traffic sxpert Frogramming

expert

= - \
= \

mllab::(EtE

Cetmal .
. P Redeflne e et
< zource . code
code use 7 -
f - - Final
v - - transformation

Platform
model adaptation Code generator

Platform
libraries

Fig. 3. Source code generation phase.

the external classes that implement the decision-making in an agent-based sim-
ulation platform with those that implement the model specification would allow
modifying the choice of tasks. This would change the behaviour of agents in the
platform, and support the specialisation of the model to a given platform.

The Simulation setup allows configuring the input parameters. A specific
wizard in the code generator tool reads the theory model and result code. Then
experts can create instances of types in the model and set their attributes. The
resulting files are packed with the code from previous phases.

The Simulation phase is the last one. In it, traffic experts configure the
simulation in the target platform (if needed),and run it for their studies.

4 Case Study

The case study illustrates how the development process produces source code
for a test simulation platform starting from an initial traffic theory. This theory
is a study of risk factors in driving [11,12]. It classifies the main problems or
situations drivers can find or feel during a trip (see Table 1), and how they affect
their proneness to make mistakes.

The Preliminary model evaluation phase selects a theory and evaluates its
adaptability to the proposed TML (see Section 2). In this case, the theory [12]
is a taxonomy of concepts with a hierarchical structure. They can be classified
following the categories of the DVE model [13], which is the main criteria of
acceptance here. The modelling planning describes informally how the main
theory elements can be related to those of the ML. In this case, categories [.A-C
correspond to parts of the profile and II.A-C to knowledge of driver persons,
ITI.A-B to the environment, and IV to the vehicle.

The Model design phase uses the graphical editor to translate the previous
modelling planning to a base theory model. The first step is Build model. It

Actas de la XVI Conferencia CAEPIA, Albacete Nov 2015

Table 1. Overview of driver error and incident causation factors.

67

I. Human Conditions and States:

II. Human Direct Causes:

III. Environment Factors:

AJPHYSICAL/PSYCHOLOGICAL

A)RECOGNITION ERRORS

A)HIGHWAY-RELATED

Alcohol impairment
Other drug impairment
Reduced vision

Critical non-performance

Failure to observe
Inattention

Internal distraction
External distraction
Improper lookout

Delay in recognition for other or unknown reasons

Control hindrance
Inadequate signs and signals
View obstructions

Design problems
Maintenance problems

B)MENTAL/EMOTIONAL

B)DECISION ERRORS

B)AMBIENT CONDITION

Emotionally upset
Preasure or strain
In hurry

Misjudgment

False assumption

Improper maneuver

Improper driving technique or practice

Inadequately defensive driving technique

Excessive speed
Tailgating

Excesive acceleration
Pedestrian ran into traffic

Slick roads

Special /transient hazards
Ambient vision limitations
Rapid weather change

IV. Vehicular factors:

C) EXPERIENCE/EXPOSURE

C)PERFORMANCE ERRORS

Driver inexperience
Vehile unfamiliarity
Road over-familiarity
Road/area unfamiliarity

Panic or freezing
Inadequate directional control

Tire and wheel problems
Brake problems

Engine system failures
Vision obscured

Vehicle lighting problems
Total steering failure

starts generating an initial diagram with the main container components, i.e.
instances of the Person, Environment, Profile, and Knowledge meta-classes. The
relationships specified in the metamodel among them must be inserted in order
to get an appropriate validation of the model. Then, the elements from the
target taxonomy [12] are added and related to the previous classes. For instance,
the Environment instance is decomposed into EComponent instances for III.A.
Highway related and III.B. Ambient conditions, which in turn are decomposed
into their children from the original classification as additional EComponent
instances. In Validate model, experts check the resulting model with the TML
and the proposed theory. If no error was made, the process continues.

The Source code generation phase begins with Get initial assets. This uses the
code generator tool to load the theory model from the previous phase. Then, it
adds platform-specific libraries. In this case, a test traffic platform was developed
to simulate environments with drivers, passengers, and pedestrians from real
data on traffic. Its libraries are stored as a compressed file. Once these initial
tasks are completed, the Redefine source code phase is focused on tailoring the
original code EMF generates for the TML for its use with the theory model.
Traffic experts select graphically the needed classes from the model (here all of
them). These classes may contain empty or incomplete method bodies. Experts
and programmers fill these methods with code snippets with the instructions to
execute in the simulation.

An example of method description is specifying the calculateX Value methods
included in several elements of the TML. For instance, code snippets similar to
the default implementation with fuzzy logic provided in the code generator can
be used. This is useful to consider the influence through relationships of some
attributes over others. Customisation here is reduced to changing thresholds in
rules. Other snippets require more coding. For instance, as this is the first use
of the testing platform, to read values from it (e.g CurrentPlace in Vehicle).

68 Alberto Fernidndez-Isabel et al.

The Source code generation phase ends with Test result code. Experts and
programmers check if the produced code works as expected in the target plat-
form. This phase also produces the result file with the generated code and the
compressed file of the test platform.

Finally, the Simulation setup phase for the target platform can create files
to configure the simulation. The target platform does not have configuration
files, so classes with methods to create objects must be provided. These objects
are instances of the classes in the code of the previous phase. The wizard reads
the code of these classes, allows experts to specify their objects graphically, and
generates the related source code.

This case study does not include behavioural components, which are not
considered in this paper but are part of the TML. As the example simulation
platform provides a default behaviour of path following adjusted with parameters
as speed or reaction time, these can be linked to the generated result code here.
For instance, this code can increase the speed for a vehicle in the platform when
the related person has high values in its PComponent of Driver inexperience.

Two tasks appear as the most challenging for traffic experts and program-
mers. The specification of an appropriate modelling planning has to describe
how to adapt and model the selected traffic theory with the TML. The example
here is reduced, but more complex theories require a higher number of intercon-
nected concepts. The second one is the code adaptation to the target simulation
platform. It requires a cycle of generating specialised source code and testing it,
repeated until the result is suitable for the goals of the study.

Despite these difficulties, the productivity of the process, considering the cur-
rently limited experimentation, is higher than in traditional development pro-
cesses. These make a limited use of models (mainly for documentation purposes),
guidelines (as few are documented in literature), and tools (mainly wizards) to
guide experts. In our case, the application of these resources facilitates develop-
ment, moving effort from coding to modelling.

5 Related work

Road traffic simulation is a broad field of research, that includes different areas
depending on the specific problems simulated. This work mainly considers traffic
aspects to model and the development process.

The proposed MDE process considers a full and flexible development process,
while other works only offer partial constrained solutions [9]. For instance, the
work in [4] specifies a model with an implicit specialisation relationship among
available components. This can cause difficulties if the model must be extended
to integrate other theories or elements. This is also the case of the taxonomy in
[11]. To avoid this situation, our metamodel just specifies a general and open
TML. This mitigates the problems related to integrate new elements from addi-
tional traffic theories. On the other side, there are also MLs too abstract, that
can only produce a general specification of traffic. The work in [2] presents a
model based on Activity Theory. It is designed to embrace multiple possibilities

Actas de la XVI Conferencia CAEPIA, Albacete Nov 2015 69

regarding the elements present in traffic. However, it does not consider the dif-
ferent features of individuals, and how they can be related among them and with
the environment in different ways. Thus, it provides little guidance to experts
when modelling these aspects.

The adoption of tailored tools facilitates the application of the process. In
particular, the code generator provides a visual interface for automating most
of tasks, which facilitates the code transformation and the integration of the
resulting source code in the target platform. The specialisation of model classes
with code is isolated in specific tasks, which improves the autonomy of traffic
experts. Programmers can perform these tasks using a well-known programming
language (in this case Java), and avoiding the need of learning less-used specific
transformation languages (e.g. MOFScript [10]).

6 Conclusions

This paper has introduced a MDE approach to develop road traffic simulations.
It has described the phases of its process, going from the model design to the
generation of source code.

The process is based on the TML. This is focused on the behaviour of partic-
ipants in traffic (following ABM [5]) and their interactions (adopting the DVE
model [13]). Its design pursues facilitating the integration of existing traffic the-
ories, allowing representing multiple interactions of individuals with the envi-
ronment. The ML also supports hierarchical structures of inheritance and com-
position to produce specialised elements.

Two main tools support the process. A graphical editor is used to specify
models. The code generator allows transformations from models to source code,
and code adaptation to the target platform. It also facilitates reusing artefacts
from other projects.

The development process is conceived as iterative and incremental. It refines
models and code, starting with those related to abstract concepts (those of the
TML in the theory model and the code EMF generates for the TML) and moving
to design concepts (in the result code). The process presents two difficult aspects:
the generation of a modelling planning, where traffic experts determine how the
elements from a theory fit into the TML; and the use of code snippets, where
errors can appear before the target functionality is achieved.

The case study shows how the process meets its goals, producing appropriate
code for the simulation in the target platform. The TML is also suitable to
integrate the selected theoretical model.

More experiments support the approach and its guidelines, but it is still
ongoing work with open issues. The TML needs more testing with additional
theories to identify new potential modelling primitives. The process could need to
redefine its phase structure, grouping some internal phases when tools automate
them more, or introducing new steps with additional guidelines. For instance,
the Simulation setup phase could be integrated in the previous one as an internal
phase when it is simplified.

70

Alberto Fernidndez-Isabel et al.

Acknowledgments

This work has been done in the context of the project “Social Ambient Assisting
Living - Methods (SociAAL)” (grant TIN2011-28335-C02-01) supported by the
Spanish Ministry for Economy and Competitiveness, the research programme
MOSI-AGIL-CM (grant S2013/ICE-3019) supported by the Autonomous Region
of Madrid and co-funded by EU Structural Funds FSE and FEDER, and the
“Programa de Creacién y Consolidacién de Grupos de Investigacién” (UCM-
BSCH GR35/10-A).

References

10.

11.

12.

13.

Bézivin, J.: Model driven engineering: An emerging technical space. In: R. Lammel,
J.a. Saraiva, J. Visser (eds.) Generative and Transformational Techniques in Soft-
ware Engineering, LNCS, vol. 4143, pp. 36—64. Springer, Heidelberg (2006)

. Darbari, M., Asthana, R., Singh, V.K.: Integrating Fuzzy Mde-AT Framework for

urban traffic simulation. International Journal of Software Engineering 1(2), 24-31
(2010)

Fuentes-Ferndndez, R., Galan, J.M., Hassan, S., Villafafiez, F.A.: Metamodelling
for agent-based modelling: an application for posted pricing institutions. Studies
in Informatics and Control 20(1), 55-66 (2011)

Hidas, P.: Modelling lane changing and merging in microscopic traffic simulation.
Transportation Research Part C: Emerging Technologies 10(5), 351-371 (2002)
Janssen, M.A.: Agent-based modelling. In: J. Proops, P. Safonov (eds.) Modeling
in Ecological Economics, pp. 155-172. Edward Elgar Publishing (2005)

Moore, B., Dean, D., Gerber, A., Wagenknecht, G., Vanderheyden, P.: Eclipse
Development - using the Graphical Editing Framework and the Eclipse Modeling
Framework, vol. 379. IBM RedBooks (2004)

Object Management Group: Software & Systems Process Engineering Meta-Model
Specification, v2.0. http://www.omg.org/ (2008). [Online: accessed 20-May-2015]
Object Management Group: Object Constraint Language, v2.4. http://www.omng.
org/ (2014). [Online: accessed 20-May-2015]

Pursula, M.: Simulation of traffic systems — an overview. Journal of Geographic
Information and Decision Analysis 3(1), 1-8 (1999)

The Eclipse Foundation: MOFScript Home page. http://www.eclipse.org/gmt/
mofscript/ (2015). [Online: accessed 1-September-2015]

Treat, J.R., Tumbas, N.S., McDonald, S.T., Shinar, D., Hume, R.D., Mayer, R.E.,
Stansifer, R.L., Castellan, N.J.: Tri-level study of the causes of traffic accidents:
final report. Executive summary. Indiana University, Bloomington, Institute for
Research in Public Safety (1979)

Wierwille, W.W., Hanowski, R.J., Hankey, J.M., Kieliszewski, C.A., Lee, S.E.,
Medina, A., Keisler, A.S., Dingus, T.A.: Identification and evaluation of driver
errors: Overview and recommendations. Federal Highway Administration, USA
(2002)

Xi, G., Qun, Y.: Driver-vehicle-environment closed-loop simulation of handling
and stability using fuzzy control theory. Vehicle System Dynamics: International
Journal of Vehicle Mechanics and Mobility 23(1), 172-181 (1994)

