
Multi-agent planning by distributed constraint
satisfaction

Pablo Castejón1, Pedro Meseguer2, and Eva Onaindı́a1

1 Dept. de Sistemas Informáticos y Computación, UPV
Camino de la Vera s/n, 46022 Valencia, Spain,

pcastejon@dsic.upv.es, onaindia@dsic.upv.es,
2 IIIA-CSIC, Campus de la UAB,

08193 Bellaterra, Spain
pedro@iiia.csic.es

Abstract. Multi-agent planning has received substantial attention in the last years.
A few works have considered the translation into SAT terms, to be solved dis-
tributedly by an specialized SAT solver. Here, in the context of interleaving plan-
ning and coordination, we propose an approach that uses the ABT (asynchronous
backtracking) algorithm to distributedly solve the propositional formulation of
a multi-agent planning instance. This algorithm, presented for distributed con-
straint satisfaction, is generic and provides interesting privacy properties. We
show some experimental results on some real-world instances coming from stan-
dard planning competitions.

1 Introduction

Multiagent Planning (MAP) is a relatively recent research field, in which multiple
agents work together to solve a planning task that they are not able to solve by them-
selves, or to at least accomplish better by cooperating [9]. The distributed approach to
MAP assumes various planning entities (agents) that synthesize plans and interact with
each other to coordinate their local plans to solve the MAP task. Thus, planning and
coordination are at the core of any MA planner.

A common approach in planning has been to translate the planning instance into
a propositional formula, to be solved by an off-the-shelf SAT solver and the solution
is retranslated into planning terms. To the best of our knowledge, the most recent
SAT-based approach dealing with multi-agent distribution of the planning task is µ-
SATPLAN [10], an extension of SATPLAN [12]. In this work, the task is distributed
across agents by a goal allocation method and then it is solved by refinements of itera-
tive local plans from each agent.

In this paper, we extend the previous model for problems with specialized agents
and cooperative goals (so different agents have different capabilities but common goals).
A common goal is a public proposition that must be satisfied at some point, therefore
any agent could be responsible to achieve it. Thus, we adopt an interleaving planning
and coordination method instead of goal allocation.



42 Pablo Castejón et al.

In addition, we consider ABT, a generic algorithm presented in the context of dis-
tributed constraint satisfaction, to solve the propositional logic translation of MAP in-
stances. This algorithm provides some guarantees regarding privacy, keeping inside
agents some information that could be considered sensible or reserved.

The structure of this paper is as follows. In Section 2 we summarize some planning
concepts needed for the rest of the paper and the ABT algorithm. In Section 3 we
provide a global view of our approach, detailing how we made the translation into
propositional logic. In Section 4 we describe how ABT can solve the problem, with
special emphasis into the privacy issues. We present some empirical results on real-
world benchmarks in Section 5, and finally we conclude the paper in Section 6.

2 Background

In this section we present a brief review of some notions and the most relevant trends
on SAT-based planning and multi-agent planning, as well as a description of the ABT
algorithm.

2.1 Planning as Satisfiability

Planning as satisfiability was first introduced in [13] as an alternative to the classical
heuristic search methods used to solve planning problems. The basic idea is to reduce
the planning problem to a time horizon and synthesize a propositional formula that is
satisfiable if and only if there is a plan that achieves all the goals within the bounded
time. The propositional formula comprises the relations between the state variables at
each time within the time horizon. Typically, this formula is expressed as a conjunctive
normal form (CNF).

The primary advantage of SAT-based planning is that it finds the optimal plan re-
garding makespan, but the sequential search through time horizons may entail a weak-
ness when dealing with large problems. Hence, efforts in SAT-based planning have been
focused on improving the problem encoding, the search of parallel solutions and the use
of heuristics to reduce the computation cost of satisfiability tests.

The encodings used to represent SAT problems have evolved mainly considering
different restrictions about action parallelism. The ∀-step plans uses the GraphPlan’s
notion of parallelism that allows simultaneous actions if they are pairwise independent.
This kind of encoding was used by BLACKBOX [14] and its successors. A more re-
laxed notion, ∃-step, considers simultaneous actions a set of actions that can be totally
ordered so that an earlier action does not disable a later action or chage its effects.
The latter method produces the smallest and generally most efficient encodings with
asymptotically optimal linear size.

Most of the related work in SAT-based planning used general-purpose SAT-solvers,
some used DPLL SAT-solvers [11], but during the past ten years the conflict-driven
clause learning (CDCL) algorithm has become the most widely used resolution method
along with some variable selection heuristic [17]. The use of these techniques allowed
the latest SAT-based planners outperform some search-based planners on standard bench-
marks.



Actas de la XVI Conferencia CAEPIA, Albacete Nov 2015 43

2.2 Multi-agent Planning

MAP approaches can be classified according to the planning and coordination models
they use. Some approaches, like MAPR [4], apply a pre-planning distribution, consist-
ing in allocating the goals of the MAP task to the participating agents and then solving
the individual planning tasks with a single-agent planner. Other approaches introduce
a fully automated decomposition algorithm to break down a (single) planning task into
subtasks with limited interaction; these subtasks are used to identify the underlying
multi-agent nature of the planning task [8].

Plan-merging techniques have been popularized by various planning systems, from
the iterative revision of the agents’ local plans [18] to distributed coordination frame-
works based on partial-order planning [7]. Plan merging is not an effective technique
to attain cooperative goals (goals that require the collaboration of more than one agent)
since this resolution scheme generally assumes that each agent is able to solve a subset
of the task’s goals by itself. However, some recent planners based on MA-STRIPS [5],
a minimalist multi-agent extension of the STRIPS model, use plan merging to coordi-
nate local plans of specialized agents (agents with different planning capabilities). This
is the case of Planning First [16], where agents individually synthesize plans by using
their private information and the local plans are then coordinated through a distributed
Constraint Satisfaction Problem. In general, the focus of plan merging is placed on
discovering the interaction points among agents through the shared public information.

A third group of MAP approaches can be classified as interleaving planning and
coordination. MA-A? [15] is also a MA-STRIPS-based approach that performs a dis-
tributed A* search, guiding the procedure through admissible local heuristic functions,
and the work in [3] formulates a privacy-preserving MAP model by adapting MA-A?.
Unlike models that use local heuristic search, other approaches coordinate the agents’
plans by using global distributed heuristics, which require a multi-agent design of the
heuristic and a sophisticated communication machinery between agents. In contrast,
the quality of the plans is usually much better than planners guided by local heuris-
tics. FMAP is a fully-configurable distributed search procedure that efficiently solves
tightly-coupled MAP tasks that have specialized agents and cooperative goals as well as
loosely-coupled problems [19]. A later version of this planner that uses a novel multi-
heuristic approach is presented in [20].

While almost all of aforementioned approaches are categorized as heuristic plan-
ning, it is worth mentioning the planner µ-SATPLAN [10], which extends a satisfiability-
based planner to coordinate the agents’ local plans by studying positive and negative
interactions among them.

2.3 ABT: Asynchonous Backtracking

ABT (Asynchronous Backtracking) [21] was the pioneer algorithm to solve distributed
constraint satisfaction problems. ABT is an asynchronous algorithm executed autono-
mously by each agent in the distributed constraint network, which takes its own deci-
sions and informs of them to other agents, but no agent has to wait for decisions of other
agents. Initially presented assuming one variable per agent, ABT computes a global



44 Pablo Castejón et al.

consistent solution or detects that no solution exists in finite time; it is correct and com-
plete. Binary ABT (when constraints relate pairs of variables) considers that constraints
are directed. A constraint causes a directed link between the two constrained agents: the
value-sending agent (VSA), from which the link departs, and the constraint-evaluating
agent (CEA), to which the link arrives. When the VSA makes an assignment, it informs
to the CEA, which tries to find a consistent value. If it cannot, it sends back a message
to cause backtracking in the VSA. To make the network cycle-free there is a total order
among agents, which is followed by the directed links. 3

ABT is executed on each agent. It maintains two main data structures: the agent
view and the nogood store. If self is a generic agent, self ’s agent view is the set of
values that it believes to be assigned to agents connected to self by incoming links. The
nogood store keeps the nogoods 4 received by self as justifications of inconsistent val-
ues. Agents exchange assignments and nogoods. ABT always accepts new assignments,
updating the agent view accordingly. When a nogood is received, it is accepted if it is
consistent with the agent view of self, otherwise it is discarded as obsolete. An accepted
nogood is used to update the nogood list. When an agent cannot find any value consis-
tent with its agent view, because of the original constraints or because of the received
nogoods, a new nogood is generated from its agent view, and it is sent to the closest
agent in the new nogood, causing backtracking. If self receives a nogood including an-
other agent not connected with it, self requires to add a link from that agent to self.
From this point on, a link from the other agent to self will exist, so self will receive
the values taken by that agent. The process terminates when achieving quiescence (a
solution has been found), or when the empty nogood is generated (the problem has no
solution). ABT uses four types of messages:

1. OK ?(agent , value). It informs agent that self has taken value as value. It is sent
to agents connected by outgoing links each time that self changes value.

2. NGD(agent ,ng). It informs agent that ng is a nogood. It is sent to the closest agent
to self in ng w.r.t. the agent ordering, when self does not find a consistent value.

3. ADL(agent). It asks agent to set a direct link to self.
4. STP(agent). self notifies that there is no solution.

ABT operation is as follows. Concurrently, each agent takes a value not forbidden
by any nogood and informs its lower priority agents via OK? messages. When an agent
finds all its values forbidden by nogoods, a new nogood is created as the resolution of
these nogoods, and it is sent to the closest agent mentioned in the new nogood, via a
NGD message. The value of that agent is forgotten in the agent view, and the nogood
store is updated accordingly. Then, the assignment process is repeated.

3 For non-binary ABT, each clause has an evaluating agent, to which all other agents in the
clause send their values. It is the last agent in the total ordering among the clause agents. It
tries to satisfy the clause by choosing a value of its domain that is consistent with the values
of the other agents. If no such value exists, it performs backtracking.

4 A nogood is a conjunction of assignments that has been found inconsistent, so it cannot be
satisfied by any solution. Nogoods are usually written in directed form: left-hand side⇒ right-
hand side (abbr. lhs⇒ rhs), where rhs only contains the assignment of the deepest variable
in the total ordering when finding the nogood. Assuming that ¬(x = true ∧ y = false) is a
nogood and y is the deepest variable, the directed nogood is x = true ⇒ y 6= false [1].



Actas de la XVI Conferencia CAEPIA, Albacete Nov 2015 45

3 SAT Encoding for Multi-Agent Planning

In this section we present the formalization of a MAP task, the particularization to
SAT-based planning, and finally the method used to generate the SAT-encoding for
each agent. We define a multi-agent planning task as in [20], where agents have limited
knowledge of the planning task, and it is assumed that missing information is unknown
to the agent. A world state is defined through a finite set of state variables, V , each of
which is associated to a finite domain, Dv , of mutually exclusive values. Assigning a
value d to a variable v ∈ V generates a fluent, a tuple of the form 〈v, d〉. A state S is
defined as a finite set of fluents. An action a ∈ A is of the form a = pre(a)→ eff(a),
where pre(a) and eff(a) are sets of fluents representing the preconditions and effects
of a. Executing an action a in a world state S leads to a new world state S′ as a result of
applying eff(a). An effect of the form 〈v, d〉 updates S′ w.r.t. S, replacing the fluent
〈v, d′〉 ∈ S by 〈v, d〉.

Definition 1. A MAP task is a tuple TMAP = 〈AG,V, I,G,A〉. AG = {1, . . . , n} is
a finite non-empty set of agents. V =

⋃
i∈AG Vi, where Vi is the set of state variables

known to an agent i. I =
⋃

i∈AG Ii is a set of fluents that defines the initial state of
TMAP . Since specialized agents are allowed, they may only know a subset of I; the
initial states of two agents never contradict each other. G is a set of fluents defining the
goals of TMAP . Finally, A =

⋃
i∈AG Ai is the set of planning actions of the agents.

A solution plan for TMAP is a set of actions that achieves all the goals G of TMAP .
In a MAP task with specialized agents, the planning capabilities of each agent are de-
fined in a separate domain file. On the other hand, since agents have different knowledge
of the task, this information is also encoded in a separate problem file. The distribution
of the information sources of each agent is the most natural way to preserve privacy,
but sharing information might be necessary to generate a consistent joint plan. Hence,
assuming two different agents in AG, i and j, we distinguish three levels of privacy:

public variable (Vi
pu) : ∀i,j v ∈ Vi ∩ Vj

private variable to agent i (Vi
pr) : v ∈ Vi ∧ @j|v ∈ Vj

shared variable of agent i with agent j (Vi
sh) :

∧
v ∈ Vi ∩ Vj

∃a ∈ Ai|〈v, ·〉 ∈ eff(a)
@a′ ∈ Aj |〈v, ·〉 ∈ eff(a′)

Thus, the set of known variables of an agent i is Vi = Vi
pu∪Vi

pr ∪Vi
sh, the union of

the non-overlapping sets of variables according to their privacy. We adopt the STRIPS
model of the multi-agent PDDL task definition used in the Competition of Distributed
and Multi-Agent Planning (CoDMAP, http://agents.fel.cvut.cz/codmap/) and, therefore,
the domain of each variable v ∈ V is reduced to Dv = {d,¬d}. Instead of using the
factored representation of MAP tasks in CoDMAP, we used the unfactored represen-
tation, where a single information source is defined for all the agents. Thus, our aim
is precisely to identify the planning task associated to each agent as in [8] and gen-
erate a planning graph equivalent to a Distributed Planning Graph [22]. Actions and
propositions are defined using the following templates to better identify their owner:



46 Pablo Castejón et al.

– (operator agent parameters): a ∈ Aagent, an action performed by agent.
– (property agent parameters): v ∈ Vagent, a property of agent.
– (property parameters): a property of an object in the domain (public proposition).

For instance, in the Logistics example shown in Figure 1 (instance prob-4-0 from
the ICAPS 2000 International Planning Competition http://ipc00.icaps-conference.org/),
we consider trucks and planes as agents, therefore an action of the truck agent tru1
(drive-truck tru1 pos1 apt1 cit1) denotes that tru1 moves from position pos1 to the
airport apt1 within city cit1. Similarly, a proposition owned by tru1 is (at tru1 pos1),
representing that tru1 is at the position pos1. And, finally, (at obj11 pos1) represents
the location of the package obj11 in the position pos1 as a public proposition.

Fig. 1. Initial and goal states of the problem instance of the Logistics domain.

Our model follows the schema shown in Figure 2. The SAT-encoding of our ap-
proach is an extension of the Graphplan-based parallel encoding [12] and the proposal
introduced in [2]. The compiler processes the domain and problem files and generates
a global planning graph for a time horizon T . Each variable v ∈ V and action a ∈ A is
replicated for each time t ∈ {0, . . . , T} at which it appears in the planning graph, and
encoded into a CNF formula ΦT such that ΦT is satisfiable iff there is a solution plan
within the time horizon T .

A planning agent handles multiple variables, but an ABT agent has a single vari-
able only. Can we build a planning agent from several ABT agents? The answer is yes
[6].The basic idea is that the planning agent i ∈ AG can be seen as a multitude of ABT
agents (one per variable), working to satisfy the propositional formula. Since ABT with
one variable per agent is correct and complete [21], the realization of the planning agent
i via ABT agents is also correct and complete.

Since ABT requires a total order, each propositional variable is adequately num-
bered (see Section 4). Assuming that ABT uses a lexicographical ordering (a variable
with lower index is located higher in the total order than a variable with greater index),
each agent i ∈ AG is in charge of the propositional variables corresponding to its vari-
ables and actions, and it will receive Φi

T ⊆ ΦT , i.e., the subset of clauses such that the
highest numbered variable corresponds to one mapped variable from Vi ∪ Ai.

When an agent i attempts to satisfy a formula Φi
T that involves a public variable

with another agent, it is necessary some mechanism by which both agents are informed
of a change in the variable. In order to do so, we replicate public variables for each
agent, we add then equality constraints between replicas to each Φi

T , and the agents’



Actas de la XVI Conferencia CAEPIA, Albacete Nov 2015 47

Fig. 2. Multi-agent sat-based planning schema. V 1
T ∩ V 2

T · · · ∩ V n
T 6= ∅ if planning agents have

public variables (as the problem in Figure 1).

formulas are solved concurrently with a distributed SAT-solver (in this case ABT). We
define replace(Φ, v, v′) a function that replaces all the occurrences of variable v in the
propositional formula Φ with the new variable v′. Variables and clauses are updated,

– Vi
pu = Vi

pu \ {v}
⋃

j 6=i∈AG{vj}
– Vi

sh = Vi
sh ∪ {vi}

– Φi
T = replace(Φi

T , v, vi)
∧

j 6=i∈AG{vi ∨ ¬vj} ∧ {¬vi ∨ vj}

4 Resolution using ABT

According to the description of Section 3, each agent i receives the set of propositional
variables Vi ∪ Ai that it controls and a formula CNF Φi

T , to be solved cooperatively
with the rest of agents. This can be done as follows.

For a moment, let us consider the whole formula Φ. We know that, if there is a total
order among the propositional variables of the formula, ABT is a correct and complete
algorithm when executing on each variable of the formula. The total order can be easily
obtained by ordering first the variables of agent 1, second the variables of agent 2, and
so on. Inside each agent, the total order may be arbitrary (in the next paragraph we will
require a particular order). Then, executing simple ABT on each propositional variable,
we will obtain a solution of the considered instance (if it is satisfiable) or we will prove
that no solution exists (if it is unsatisfiable). ABT processes exchange messages; inside
the same agent, message exchange is implemented by shared memory, while between
agents message exchange is done through a communication network.

If we require a particular order inside each agent, we can achieve a desirable prop-
erty as explained next. If we order propositional variables coming from originally pri-
vate variables last in the total order inside each agent, we can assure that during ABT
execution the values of these propositional variables will not go out from each agent, as
proved by the following theorem.

Theorem 1. The values of propositional variables coming from originally private vari-
ables do not go out from its respective agents during ABT execution.



48 Pablo Castejón et al.

Proof. The value of a propositional variable x is disseminated via OK ? messages,
which are sent to other variables y below in the order, such that x appear with y in the
same clause. Given that propositional variables coming from originally private variables
do not appear in clauses with variables of other agents, the destination of these OK ?
messages necessarily has to be the same agent.

Remains to be seen that x has not received an ADL message from a variable z of
another agent located below x in the total order. Let us see that this is not possible. Let
us assume that x has received such message from a variable z of another agent. How
does z know the value of x? Since x has sent its value to variables in its own agent, it is
impossible for z to know anything about x. So z cannot sent such message. �

In summary, with a simple total order, existing ABT is able to solve the MAP prob-
lem. In addition, with a particular total order inside each agent, we can prove that ABT
will never disseminate values that should remain private inside each agent.

5 Implementation

As a proof of concept, we have run several experiments described in the following. All
domains and problems are extracted from the CoDMAP as part of the DMAP workshop
in the ICAPS’15. Domain files have been modified to the STRIPS version of PDDL as
stated in Section 3. The SAT encoding has been done using BlackBox [14]. Table 1
shows the statistics gathered from several problems of three planning domains, Zeno-
travel, Driverlog and Logistics. The values correspond to the encoding generated for
the minimum satisfiable makespan, where #A and #P are the total number of actions
and the total number of propositions contained in the planning graph respectively; %Pu
is the percentage of public variables within the associated set; #V is the total number
of variables mapped to SAT; and finally #C is the total number of clauses encoded in
CNF. We differentiate between the classical mono-agent encoding of the planning prob-
lem and the multi-agent version The mono-agent encoding is solved by an off-the-shelf
SAT solver. In the multi-agent version AG refers to the number of participant agents.

Although ABT is able to solve completely the multi-agent planning instances re-
ported, it is quite slow. We plan to improve our ABT-based implementation, in order to
achieve empirical results closer to the performance reported by centralized ones. 5

Table 2 shows the plan returned by our implementation for the logistics problem in
Fig. 1. This is the plan of minimal makespan, as expected from an incrementally time
horizon calculation. However, we can observe that the individual plans contain some
unnecessary actions like, for instance, the first two consecutive reversible actions of
agents apn1 and tru1. This is due to the ordering of the variables within the formulas
and the absence of a planning heuristic that helps guide the search towards action min-
imization. As for future work, we intend to explore planning-specific variable selection
strategies for SAT that have been successfully applied in single-agent planning [17].

5 Typically, distributed asynchronous algorithms show lower performance than centralized ones
because, in addition to the required computation, they have to face situations not considered
by centralized approaches (they have to be ready to handle any asynchronous change).



Actas de la XVI Conferencia CAEPIA, Albacete Nov 2015 49

Table 1. Planning problems’ configuration and SAT-encoding statistics.

Configuration Classical Multi-Agent
Domain Problem Makespan #A (%Pu) #P (%Pu) #V #C #V #C AG

Zenotravel

pfile3 4 265 (0.22) 151 (0.56) 416 5276 560 6605 2
pfile4 5 392 (0.22) 196 (0.58) 588 10847 786 12749 2
pfile5 5 467 (0.18) 199 (0.59) 666 20235 869 22692 2
pfile6 5 689 (0.14) 237 (0.55) 926 32402 1153 35988 2

Driverlog

pfile1 6 73 (0.70) 91 (0.74) 164 223 282 621 2
pfile2 7 609 (0.34) 341 (0.76) 950 13936 1416 18159 2
pfile3 7 564 (0.37) 340 (0.76) 904 11465 1372 15576 2
pfile4 7 881 (0.25) 389 (0.71) 1270 32321 2264 48001 3

Logistics

prob-4-0 9 382 (0.31) 278 (0.53) 660 2585 1192 6055 3
prob-5-0 9 484 (0.31) 347 (0.52) 831 3406 1495 7788 3
prob-6-0 9 573 (0.31) 391 (0.54) 964 4471 1740 9853 3
prob-7-0 12 1356 (0.27) 798 (0.53) 2154 19388 4545 45998 4

Table 2. Plan generated for the instance prob-4-0 of the Logistics domain.

Time Agent apn1 Agent tru1 Agent tru2

1 (fly-airplane apn1 apt2 apt1) (drive-truck tru1 pos1 apt1 cit1) (load-truck tru2 obj23 pos2)
(load-truck tru2 obj21 pos2)

2 (fly-airplane apn1 apt1 apt2) (drive-truck tru1 apt1 pos1 cit1) (drive-truck tru2 pos2 apt2 cit2)

3 () () (unload-truck tru2 obj21 apt2)
(unload-truck tru2 obj23 apt2)

4 (load-airplane apn1 obj23 apt2) (load-truck tru1 obj11 pos1) ()(load-airplane apn1 obj21 apt2) (load-truck tru1 obj13 pos1)

5 (fly-airplane apn1 apt2 apt1) (drive-truck tru1 pos1 apt1 cit1) ()

6 (unload-airplane apn1 obj23 apt1) (unload-truck tru1 obj11 apt1) ()(unload-airplane apn1 obj21 apt1) (unload-truck tru1 obj13 apt1)

7 () (load-truck tru1 obj23 apt1) ()(load-truck tru1 obj21 apt1)

8 () (drive-truck tru1 apt1 pos1 cit1) ()

9 () (unload-truck tru1 obj23 pos1) ()(unload-truck tru1 obj21 pos1)

6 Conclusion

We have presented an approach to solve MAP instances that, in the context of in-
terleaving planning and coordination, considers its translation in a propositional for-
mula, which is distributed among agents and solved asynchronously by the generic
ABT algorithm (originally presented for solving distributed constraint satisfaction prob-
lems). Each planning agent implements a number of ABT processes, one per elemen-
tary propositional variable. Interestingly, an adequate ordering of variables allows this
approach to assure privacy of the variables originally considered private in the initial
PDDL formulation. Experimental results on some benchmark instances extracted from
planning competitions show the feasibility of our approach.



50 Pablo Castejón et al.

References

1. A. B. Baker. The hazards of fancy backtracking. In Proc. of AAAI-94, pages 288–293, 1994.
2. M. Benedetti and L. Aiello. Sat-based cooperative planning: A proposal. In D. Hutter and

W. Stephan, editors, Mechanizing Mathematical Reasoning, volume 2605 of LNCS, pages
494–513. Springer Berlin Heidelberg, 2005.

3. A. Bonisoli, A. E. Gerevini, A. Saetti, and I. Serina. A privacy-preserving model for the
multi-agent propositional planning problem. In Proc. ECAI, pages 973–974, 2014.

4. D. Borrajo. Multi-agent planning by plan reuse. In Proc. AAMAS, pages 1141–1142, 2013.
5. R. Brafman and C. Domshlak. From one to many: Planning for loosely coupled multi-agent

systems. In Proc. ICAPS, pages 28–35, 2008.
6. D. Burke and K. Brown. Efficient handling complex local problems in distributed constraint

optimisation. In Proc. ECAI, pages 701–702, 2006.
7. J. Cox and E. Durfee. Efficient and distributable methods for solving the multiagent plan

coordination problem. Multiagent and Grid Systems, 5(4):373–408, 2009.
8. M. Crosby, M. Rovatsos, and R. Petrick. Automated agent decomposition for classical plan-

ning. In Proc. ICAPS, pages 46–54, 2013.
9. M. de Weerdt and B. Clement. Introduction to planning in multiagent systems. Multiagent

and Grid Systems, 5(4):345–355, 2009.
10. Y. Dimopoulos, M. A. Hashmi, and P. Moraitis. µ-satplan: Multi-agent planning as satisfia-

bility. Knowledge-Based Systems, 29:54–62, 2012.
11. J. Hoffmann, C. P. Gomes, and B. Selman. Structure and problem hardness: Goal asymmetry

and DPLL proofs in sat-based planning. Logical Methods in Computer Science, 3(1), 2007.
12. H. Kautz, D. Mcallester, and B. Selman. Encoding plans in propositional logic. pages 374–

384, 1996.
13. H. Kautz and B. Selman. Planning as satisfiability. pages 359–363, 1992.
14. H. Kautz and B. Selman. Blackbox: A new approach to the application of theorem proving

to problem solving. pages 58–60, 1998.
15. R. Nissim and R. Brafman. Multi-agent A* for parallel and distributed systems. In Proc.

AAMAS, pages 1265–1266, 2012.
16. R. Nissim, R. Brafman, and C. Domshlak. A general, fully distributed multi-agent planning

algorithm. In Proc. AAMAS, pages 1323–1330, 2010.
17. J. Rintanen. Planning as satisfiability: Heuristics. Artif. Intell., 193:45–86, Dec. 2012.
18. H. Tonino, A. Bos, M. de Weerdt, and C. Witteveen. Plan coordination by revision in collec-

tive agent based systems. Artificial Intelligence, 142(2):121–145, 2002.
19. A. Torreño, E. Onaindia, and O. Sapena. FMAP: distributed cooperative multi-agent plan-

ning. Appl. Intell., 41(2):606–626, 2014.
20. A. Torreño, O. Sapena, and E. Onaindia. Global heuristics for distributed cooperative multi-

agent planning. In Proc. ICAPS, 2015.
21. M. Yokoo, E. Durfee, T. Ishida, and K. Kuwabara. The distributed constraint satisfaction

problem: Formalization and algorithms. IEEE Trans. Know. and Data Engin., pages 673–
685, 1998.

22. J. F. Zhang, X. T. Nguyen, and R. Kowalczyk. Graph-based multiagent replanning algorithm.
In Proc. AAMAS’07.


