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Abstract. Influence diagrams are a class of probabilistic graphical mod-
els used to represent and solve decision problems with uncertainty. The
efficiency of their evaluation can be improved if probability and util-
ity potentials are represented with binary trees instead of tables. The
method for building a binary tree representing an approximate potential
requires a similarity measure for comparing two potentials. Here we pro-
pose different similarity measures for building binary trees representing
a utility potential and we test them with some IDs from the literature.
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1 Introduction
Influence Diagrams (IDs) [1, 2] provide an efficient framework for representing
and solving decision problems with uncertainty. The quantitative information
that defines an ID is given by a set of conditional probabilities for single vari-
ables given some other variables (probability potentials) and by a set of utility
functions depending on given sets of variables (utility potentials). Traditionally,
these potentials are represented using tables. However, the evaluation of large
IDs with tables becomes unfeasible due to its computational cost. One solution
consists of using alternative representations such as binary trees (BTs) [3–5]
which is an efficient data structure for storing and managing quantitative infor-
mation. This data structure takes advantage of contextual-weak independencies
[6, 7] so that identical values can be grouped into a single one offering a compact
storage. Moreover, when BTs are too large they can be pruned and converted
into smaller trees leading to approximate encodings.

Given a potential represented as a table, there might be more than one equiv-
alent BT with different sizes. Thus the task of building a minimal BT becomes
crucial for the efficiency of the evaluation. In previous works [3, 5] a heuristic
algorithm for building BTs from tables and pruning them is proposed. This
method uses a similarity measure or divergence for comparing each of the inter-
mediate BTs with the exact potential (e.g. Kullback Leibler divergence, Cosine
similarity, Extended Jaccard coefficient, Euclidean distance, etc.). When build-
ing a BT representing a probability potential, Kullback Leibler divergence can
be used. By contrast, in case of utilities, it is not clear which is the most suitable
similarity measure. Herein we study some of them and explain how they can
be used in an efficient way for building and pruning BTs representing utility
potentials. These alternatives are tested with some IDs from the literature.
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2 Basics
Let us first define the basic notation. We use upper-case letters for variables
and lower-case for states. In this paper we will only consider discrete variables.
Thus, the domain of a variable X with n possible states is ΩX = {x1, x2, . . . , xn}.
Given a set of m variables X = {X1, . . . , Xm}, the domain of the joint variable
is defined as ΩX = ×Xi∈XΩXi , where × is the Cartesian product. Elements of
ΩX are called configurations and denoted as x.

2.1 Influence Diagrams

Influence diagrams (IDs) [2, 1] are a kind of probabilistic graphical model for
solving decision problems under uncertainty. An ID over a set of chance and
decision variables UC ∪UD consists of a qualitative and a quantitative part. The
qualitative part is a directed acyclic graph (DAG) G with three different types of
nodes. Chance nodes (circles) are associated to the chance variables UV . Decision
nodes (squares) are associated to decision variables UD. The set of Utility nodes
(diamonds) is denoted as UV . The quantitative part is made of a set of probabil-
ity potentials Φ (representing the uncertainty) and a set of utility potentials Ψ
(representing the user preferences). A probability potential over two disjoint sets
of variables XI and XJ , denoted as φ(XI |XJ), is a map φ : ΩXI∪J → [0, 1] such
that

∑
xI∈ΩXI

φ(xI |xJ) = 1 for each xJ ∈ ΩXJ
. Similarly, a utility potential

over XI , denoted as ψ(XI), is a map ψ : ΩXI
→ R. Notice that utility poten-

tials are not normalized. The immediate predecessors of a node Y according to
the G are called parents and denoted as ΠY . For each chance node, a probability
potential over the corresponding variable and its parents is defined, while, for
each utility node, a utility potential over the parents should be assessed. The
formal definition of an ID is:

Definition 1 An ID is a tuple 〈G,UC ,UD,UV , Φ, Ψ〉 , where G is a DAG over
UC ∪ UD ∪ UV , while Φ = {φ(X,ΠX)}X∈UC and Ψ = {ψ(ΠU )}U∈UV are sets of,
respectively, probability and utility potentials.

The decisions have a temporal order, D1, . . . , Dn, and the chance nodes are
partitioned into a collection of disjoint sets Ii according to when they are ob-
served. That is, there is a partial order I0 ≺ D1 ≺ I1 ≺ · · · ≺ Dn ≺ In. When
evaluating an ID, we must identify an optimal strategy, denoted ∆̂, maximizing
the expected utility for the decision maker and compute the maximum expected
utility MEU(∆̂). For each Di, this optimal strategy includes an optimal policy

δ̂Di , which is a mapping that specifies the best action for the decision maker for
each configuration in ΩΠDi

. Assuming an additive decomposition of the utility,

the MEU(∆̂) can be calculated as follows:

MEU(∆̂) =
∑
I0

max
D1

· · ·max
Dn

∑
In

∏
X∈UC

φ(X|ΠX)

( ∑
U∈UV

ψ(ΠU )

)
(1)

2.2 Binary Trees

Traditionally, potentials have been represented using tables. However, alterna-
tive representations can be used to reduce the computation involved during the
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evaluation of an ID. For example, binary trees (BTs) are a compact data struc-
ture for representing potentials in BNs [5] and IDs [3, 4].

Definition 2 (Binary Tree) A BT defined over the set of variables XI , de-
noted BT (XI), is a directed tree, where each internal node is labelled with a
variable Xi ∈ XI (random or decision), and each leaf node is labelled with a
probability or a utility value. We use Lt to denote the label of node t. Each in-
ternal node has always two children. We denote by Llb(t) and Lrb(t) the labels
(two subsets of ΩXi) of the left and right branches of node t. Then, we denote
by tl and tr the two children of t (tr for the right child and tl for the left one).

A binary tree BT (XI) represents a potential ψ : ΩXI
→ R if for each

xI ∈ ΩXI
the value ψ(xI) is the number stored in the leaf node that is reached

by starting from the root node and selecting the branch corresponding to state
xi for each internal node labelled with Xi ∈ XI . Fig. 1 shows three different
representations for the same utility potential.

ψ(A,B) b1 b2 b3 b4
a1 30 30 30 30
a2 15 15 20 20
a3 25 25 25 25

A

30

a1

A

B

15

b1, b2
20

b3, b4

a2
25

a3

a2, a3
A

30

a1

A

17.5

a2

25

a3

a2, a3

(a) (b) (c)

Fig. 1. Potential represented as (a) a table, (b) an exact BT and (c) a pruned BT

The main advantage of BTs is that they allow the specification of contextual-
weak independencies [6, 7]. That is, identical values of the potential can be
grouped into a single branch, allowing a smaller representation. For example,
the table in Fig. 1 requires 12 values while the exact BT requires 7 nodes. If BTs
are too large, they can be pruned and converted into smaller trees, thus leading
to approximate algorithms. When a tree is pruned, leaves with similar values are
represented with a single leaf labelled with their mean.

Given a node t in a BT (XI), the set of its ancestors is denoted by Xt
I and

the set of available states of Xi at t is denoted by ΩtXi . If Xi ∈ Xt
I , then ΩtXi

is the set of states labelling the outgoing branch of Xi in its last occurrence in
the path from the root to t. Otherwise, ΩtXi is equal to ΩXi . The associated
extended configuration for the node t is the multi-set At = {ΩtXi |Xi ∈ XI}.
We denote by ψR(At) the utility potential consistent with At; it corresponds to
the sub-tree where t is the root node. Fig. 2 shows an example of these definitions.

ψ(A,B)R(At) b1 b2 b3 b4
a2 15 15 20 20
a3 25 25 25 25

Ωt
A = {a2, a3} Ωt

B = {b1, b2, b3, b4}

At = {{a2, a3}, {b1, b2, b3, b4}}

Fig. 2. Sets of available states, extended configuration for the node t and its consistent
potential. Consider the BT shown in Fig. 1 (b) and that t is the node labelled with A
whose outgoing arcs are labelled with a2 and a3 respectively.
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Building and pruning a BT When a BT is built, variables should be sorted
in such a way that the most informative variables are situated at the highest
nodes in the tree. BTs can be built from tables using a top-down approach,
choosing at each step a variable and two partitions of its states that maximize the
information gain. At each step, a BT j approximating the potential is generated.
This process stops when the exact BT is obtained. Fig. 3 shows the process for
building a BT representing ψ(A,B) from Fig. 1. More details are given in [3–5].

Definition 3 (Information Gain) Let ψ be the potential (probability or util-
ity) to be represented as a tree BT j and BT j(t,Xi, Ω

tl
Xi
, ΩtrXi) the tree resulting

of expanding the leaf node t with the candidate variable Xi and a partition of its
available states into sets ΩtlXi and ΩtrXi . Let D(ψ,BT j) be the distance between
a potential and a tree. The information gain can be defined as:

I(t,Xi, Ω
tl
Xi
, ΩtrXi) =

∣∣D(ψ,BT j)−D(ψ,BT j(t,Xi, Ω
tl
Xi
, ΩtrXi))

∣∣ (2)

For computing the information gain, we need to use a distance or a similarity
measure between an exact potential and a tree (e.g. Kullback Leibler, Euclidean
distance, cosine, etc.). When building a BT representing a probability potential,
Kullback Leibler divergence will be used. In case of utilities, there are different
alternatives that are explained in Sections 3 and 4.
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Fig. 3. Process for building a BT representing ψ(A,B) from Fig. 1.

After the building process, the exact BT can be pruned in order to get an
approximate but reduced one. Pruning a BT consists of replacing a terminal tree
by the average value of its leaves. To decide if a terminal can be pruned, Eq. (2)
is computed between the pruned and the non-pruned BTs. In general, the BT is
pruned if the information gain is lower than a given threshold ε. However, this
condition can vary depending on the similarity measure used (see Section 4.2).
Depending on the variable and partitions chosen at each step, there might be
more than one BT representing the same potential. For example, Fig. 4 shows
two different BTs of different sizes representing the potential shown in Fig. 1. In
general, we will try to obtain the smallest BT with similar values in close leaves
in order to reduce the error when pruning.
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Fig. 4. Two different BTs of different sizes representing the potential in Fig. 1
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3 Similarity between utility potentials
In previous section, a heuristic method for building and pruning a BT represent-
ing a potential was explained. The process is guided by the information gain (see
Eq. (2)) which involves computing the distance or similarity between potentials.
Herein we propose different alternatives for computing the distance between a
utility potential ψ and a BT approximating it.

3.1 Minkowski distances

Given two vectors of real numbers x and y, the Minkowski distances are defined

with the expression D(x, y) =
(∑d

i=1 |xi − yi|p
)1/p

. For p = 2 the Euclidean

distance is obtained, and its expression for measuring the distance between a
tree BT and a utility potential ψ defined over XI is:

DEU (ψ,BT ) =

√ ∑
xI∈ΩXI

(ψ(xI)− BT (xI))
2

(3)

The Euclidean distance can be normalized between [0, 1] using Eq. (4). This
new distance will be called Euclidean normalized. It can also be normalized using
the exponential function and it will be called Euclidean exponential (see Eq. (5)).

DNORM (ψ,BT ) =
1

1 +DEU (ψ,BT )
(4)

DEXP (ψ,BT ) = e−DEU (ψ,BT )2 (5)

In the Euclidean space, iso-similarities are concentric hyper-spheres around
a considered point (see Fig. 5 (a),(b),(c)). Euclidean distance is translation in-
variant but scale variant.

3.2 Cosine Measure

Similarly, it can be used the cosine of the angle between two vectors [8]. The
cosine distance between a tree BT and a utility potential ψ defined on XI is:

DCOS(ψ,BT ) =

∑
xI∈ΩXI

ψ(xI) · BT (xI)√∑
xI∈ΩXI

ψ(xI)2 ·
√∑

xI∈ΩXI
BT (xI)2

(6)

Cosine measure is defined in the interval [0, 1]. It is decreasing: similar points
have distance 1, while the highest distance is 0. Cosine distance is translation
variant but scale invariant (see Fig. 5 (d)).

3.3 Extended Jaccard coefficient

Another popular similarity measure is the Extended Jaccard coefficient [9]. Let
ψ be a utility potential and a tree BT approximating the potential. Then, the
Extended Jaccard coefficient is defined as follows:
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Iso-similarities spaces with respect the considered the point (shown as a red
cross). Darkest colours imply a higher value of the distance and vice-versa.

DJAC(ψ,BT ) =

∑
xI∈ΩXI

ψ(xI)·BT (xI)(∑
xI∈ΩXI

ψ(xI)2
)

+

(∑
xI∈ΩXI

BT (xI)2
)
−
∑

xI∈ΩXI
ψ(xI)·BT (xI)

(7)
The Extended Jaccard coefficient is defined in the interval [0, 1]. It is de-

creasing: similar points have distance 1, while the highest distance is 0. The
iso-similarities are non-concentric hyper-spheres (see Fig. 5 (e)).

3.4 Kullback Leibler divergence

Traditionaly, Kullback Leibler divergence [10] has been used for measuring the
discrepancy between two probability distributions. It is given by:

DKL(ψ,BT ) =
∑

xi∈ΩxI

ψ(xI) · log
ψ(xI)

BT (xI)
(8)

Kullback Leibler divergence is a non-negative measure where the maximum
similarity is given by the value 0 (see Fig. 5 (e)). The minimum similarity is
given by the value ∞. Since Kullback Leibler divergence requires the potentials
to be non-negative, we propose applying a transformation to the utility potentials
similar to that proposed by Cooper [11, 12].

Proposition 1. Let Ψ = {ψ(ΠU )}U∈UV be the set of utility potentials of an
ID, and let max and min be the maximum and minimum utility values specified
in the ID for all possible utility nodes and parent configurations. An equivalent
normalized ID can be obtained if each utility potential ψ(ΠU ) is replaced by a
new utility potential ψ′(ΠU ) such that:

ψ′(πU ) =
ψ(πU )−min
max−min ∀πU ∈ ΩΠU (9)
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4 Building and Pruning with Similarity Measures

4.1 Information Gain Computation

The general scheme for building and pruning a BT representing a utility po-
tential ψ is explained in Section 2.2. Herein we detail how this method can be
adapted for each similarity measure given in the previous section. In particular,
it is only required to explain how the information gain (Eq. (2)) is calculated.
Suppose that we aim to represent a utility potential ψ as a tree. Let BT j be
an intermediate tree in the building process and BT j(t,Xi, Ω

tl
Xi
, ΩtrXi) the tree

resulting of expanding the leaf node t with the candidate variable Xi and a par-
tition of its available states into sets ΩtlXi and ΩtrXi . If the Euclidean distance
(Eq. (3)) is the similarity measure used, then the information gain IEU can be
calculated in the following way:

IEU (t,Xi, Ω
tl
Xi
, ΩtrXi) =

∣∣∣∣√sumSqr(ψR(At))− (sum(ψR(At)))2

size(ψR(At))

−
√
sumSqr(ψR(Atl ))− (sum(ψR(Atl )))2

size(ψR(Atl ))
+ sumSqr(ψR(Atr ))− (sum(ψR(Atr )))2

size(ψR(Atr ))

∣∣∣∣
(10)

where sum(ψ) is the addition of all the values of a potential ψ, sumSqr(ψ) is the
addition of all its square values and size(ψ) is the number of values in ψ. Due to
space restrictions we do not include the proof of this expression. The first and
second terms correspond with DEU (ψ,BT j) and DEU (ψ,BT j(t,Xi, Ω

tl
Xi
, ΩtrXi))

respectively. Thus, expressions for computing the information gain using the eu-
clidean normalized and exponential distances can be easily obtained from Eq.
(2), (4) and (5). Similarly, using Eq. (2) and (6), the expression for computing
the information gain with cosine similarity is:

ICOS(t,Xi, Ω
tl
Xi
, ΩtrXi) =

∣∣∣∣∣∣∣
(sum(ψR(At)))2

size(ψR(At))

√
sumSqr(ψR(At))·

√
(sum(ψR(At)))2

size(ψR(At))

−
(sum(ψR(Atl )))2

size(ψR(Atl ))
+

(sum(ψR(Atr )))2

size(ψR(Atr ))

√
sumSqr(ψR(Atl ))+sumSqr(ψR(Atr ))·

√
(sum(ψR(Atl )))2

size(ψR(Atl ))
+

(sum(ψR(Atr )))2

size(ψR(Atr ))

∣∣∣∣∣∣∣
(11)

If we use the extended Jaccard coefficient (see Eq. (7)), the expression for
computing the information gain is defined as follows:

IJAC(t,Xi, Ω
tl
Xi
, ΩtrXi) =

∣∣∣∣∣∣
(sum(ψR(At)))2

size(ψR(At))
− (sum(ψR(Atl )))2

size(ψR(Atl ))
− (sum(ψR(Atr )))2

size(ψR(Atr ))

sumSqr(ψR(At))

∣∣∣∣∣∣
(12)

The information gain using Kullback Leibler divergence can be computed
using Eq. (13). Note that for using this similarity measure the utility potential
ψ must be normalized using Proposition 1.
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IKL(t,Xi, Ω
tl
Xi
, ΩtrXi) =

∣∣∣sum(ψR(At)) · log(
∣∣ΩtXi ∣∣ /sum(ψR(At)))

+sum(ψR(Atl )) · log(sum(ψR(Atl ))/
∣∣ΩtlXi∣∣)

+sum(ψR(Atr )) · log(sum(ψR(Atr ))/
∣∣ΩtrXi∣∣)∣∣∣

(13)

The information gain as given in Eq. (10),(11),(12) or (13) only depends on
the values of the potential consistent with node t, and it can be locally computed.
Moreover, some computations may have already been done: during the build-
ing process, sum(ψR(At)) and sumSqr(ψR(At)) were computed when the father

node was expanded. Similarly, when pruning, sum(ψR(Atl )), sumSqr(ψR(Atl )),

sum(ψR(Atr )) and sumSqr(ψR(Atr )) were calculated when children were pruned.

4.2 Pruning Condition

Depending on the measure used, the pruning conditions may change slightly.
Suppose that t is the root of a terminal tree labelled with Xi, tl and tr its
children, ΩtlXi and ΩtrXi the sets of states for the left and right child respectively.
If Euclidean distance is used, the terminal tree is pruned if:

I(t,Xi, Ω
tl
Xi
, ΩtrXi) ≤ ε · (max−min) (14)

where max and min are the maximum and minimum utility values in the ID.
The remaining measures are either normalized (Euclidean normalized, Euclidean
exponential, Cosine and Extended Jaccard) or they compare normalized poten-
tials (Kullback Leibler divergence). Thus the pruning condition will be:

I(t,Xi, Ω
tl
Xi
, ΩtrXi) ≤ ε (15)

5 Empirical Validation

For an empirical validation, we consider six IDs from the literature [13–17]. These
IDs are evaluated using BTs for representing the potentials and considering the
similarity measures explained in Sections 3 and 4 for building and pruning them.
The evaluation algorithm used is variable elimination (VE) [18, 19]. Fig. 6 shows
computation time for the exact evaluation (ε = 0.0) of each ID using different
similarity measures. Notice that the time measured also includes the time for
building and pruning the BTs. The computation time is similar for all the simi-
larity measures. Thus we conclude that none of them introduce a large overhead.

When evaluating an ID with pruned BTs there are two objectives to consider:
memory requirements and error of the approximation. These two objectives are
controlled with the threshold for pruning ε. High values of ε will evaluate an ID
with low memory requirements but with a high error and vice-versa. Here we
aim to test if using any of the similarity measures, best approximate solutions
are obtained. For that purpose, we evaluate each ID using each similarity mea-
sure and different threshold values ε in the interval [0, 1]. For each evaluation,
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Fig. 6. Time for the exact evaluation of each ID using each similarity measure.

we measure the size of all the potentials along the evaluation and the error pro-
duced for computing the MEU (see Eq. (1)). Given a similarity measure, the
set of pairs (error, size) compose a solution set. Pareto front and hyper-volume
are computed for every solution set. The hyper-volume [20] is a unary indicator
that measures the area of the dominated portion of the space. It is defined in
the interval [0, 1], being 1 the optimal solution and 0 the worst. In other words,
a higher hyper-volume value stands for a better approximate solution. Table 1
shows the hyper-volume values obtained for each ID and similarity measure. It
can be observed that results obtained with Euclidean distance (EU) are, in gen-
eral, better than those obtained with the rest of measures.

Table 1. Hyper-volume values for each ID and similarity measure obtained from com-
paring error versus memory requirements.

EU NORM EXP COS JAC KL

Car Buyer 0.139 0.129 0.125 0.041 0.138 0.138

Jaundice 0.859 0.805 0.804 0.803 0.861 0.86

Oil 0.442 0.407 0.193 0.22 0.192 0.192

Dating 0.227 0.22 0.215 0.095 0.059 0.215

Threat of entry 0.78 0.684 0.684 0.685 0.685 0.684

NHL 0.668 0.652 0.649 0.65 0.522 0.589

6 Conclusions and Future Work

In this paper we have proposed different similarity measures for comparing the
utility potentials involved in an ID. It has been explained how they can be used in
an efficient way during the process of building and pruning a BT representing a
utility potential. In the experimental part, these similarity measures have been
compared showing that, all of them have a similar cost in terms of time but
better approximate solutions are obtained using the Euclidean distance.
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3. Cabañas, R., Gómez-Olmedo, M., Cano, A.: Approximate inference in influence
diagrams using binary trees. In: Proceedings of the Sixth European Workshop on
Probabilistic Graphical Models (PGM-12). (2012)
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